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Abstract Midlatitude cirrus cloud macrophysical and microphysical properties have been shown in
previous studies to vary seasonally and in various large-scale dynamical regimes, but relative humidity
with respect to ice (RHI) within cirrus clouds has not been studied extensively in this context. Using a
combination of radiosonde and millimeter-wavelength cloud radar data, we identify 1076 cirrus clouds
spanning a 7 year period from 2004 to 2011. These data are separated into five classes using a previously
published algorithm that is based largely on synoptic conditions. Using these data and classification scheme,
we find that RHI in cirrus clouds varies seasonally. Variations in cirrus cloud RHI exist within the prescribed
classifications; however, most of the variations are within the measurement uncertainty. Additionally, with
the exception of nonsummer class cirrus, these variations are not statistically significant. We also find that
cirrus cloud occurrence is not necessarily correlated with higher observed values of RHI. The structure of RHI
in cirrus clouds varies more in thicker clouds, which follows previous studies showing that macrophysical and
microphysical variability increases in thicker cirrus clouds.

1. Introduction

Cirrus clouds cover approximately 30% of the globe [Liou, 1986] and hence represent a critical part of the
global climate system [Stephens et al., 2002]. Their spatial extent varies with climate; for example, cirrus
clouds are observed in tropical locations around ~44% of the time compared to ~24% of the time in
midlatitude locations [Kalesse and Kollias, 2013]. Cirrus clouds have known impacts on the Earth’s radiative
budget [Ackerman et al., 1988; Yang et al., 2001; Baran et al., 2014], water vapor transport in the upper
troposphere/lower stratosphere [Pfister et al., 2001], stratospheric dehydration [Potter and Holton, 1995],
and even atmospheric chemistry processes [Bogdan and Molina, 2009]. The particle shape, concentration,
vertical distribution, and particle size distribution of ice crystals in cirrus clouds directly affect the magnitude
of these impacts. Precise knowledge of these processes and variables is required for accurate parameteriza-
tion in global climate models [e.g., Mitchell et al., 2011] and numerical weather prediction models [e.g.,
Furtado et al., 2014].

Observational and modeling studies of cloud macrophysical/microphysical properties are critical to reducing
the uncertainty in climate model output, especially since idealized radiative transfer approximations and
cloud macrophysical/microphysical quantities are used as input [Sassen and Campbell, 2001]. These approx-
imations and quantities are inherently derived from observational studies; however, when using characteris-
tic approximations and quantities, the user must consider if replicating observational studies (for example)
for different locations would yield different results (potentially changing the said approximations and quan-
tities). For example, in Sassen and Campbell [2001], cirrus clouds observed from a 10 year data set from the
University of Utah’s Facility for Atmospheric Remote Sensing (Salt Lake City, Utah, USA) had an average
thickness of 1.81 km, cloud base and top temperatures of�34.4°C and�53.9°C (respectively), and cloud base
and top heights at 8.8 and 11.2 km (respectively). By comparison, Mace et al. [2001] used a 1 year data set of
millimeter-wavelength cloud radar (MMCR) measurements [Moran et al., 1998] and found that cirrus clouds
over the Atmospheric Radiation Program’s (ARM) Southern Great Plains (SGP) site (Lamont, OK, USA) had
an average thickness of 2.0 km and generally occurred between 8.5 and 10 km above ground level. The
generation and maintenance of midlatitude cirrus clouds, using the two aforementioned studies as an exam-
ple, are strongly dependent on regional characteristics (e.g., topography) and weather patterns [Sassen and
Campbell, 2001].
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Physical parameterizations for a grid box in a climate model assume some a priori knowledge of the physical
processes in the grid box, especially since cirrus cloud properties (often represented by probability density
functions) are correlated to dynamical regimes [Mace et al., 2006]. Dynamical regimes over the U.S.
Southern Great Plains vary seasonally, and given that climate models do not explicitly predict weather events
as would be expected for a given location, attempting to parse differences between climate model outputs
for cloud and precipitation processes and dynamical regimes is particularly challenging [Marchand et al.,
2009]. As a result, several studies have attempted to characterize cloud properties (e.g., thickness and hydro-
meteor occurrence and type) as a function of climatology [e.g.,Mace et al., 2001, 2006] and atmospheric state
[e.g., Mace et al., 1995; Sassen and Campbell, 2001; Marchand et al., 2009; Berry and Mace, 2013]. It should be
noted that the aforementioned and related studies cover various regions across the globe and not just for the
U.S. midlatitude locations. In the U.S. Southern Great Plains, dynamical and thermodynamical regimes vary
dramatically throughout the year compared to, for example, a tropical location. This is reflected in studies
that characterize the large-scale atmospheric state for these climatologically distinct locations: using
long-term data sets, 21 distinct atmospheric states were determined for the ARM SGP site [Marchand et al.,
2009; Evans and Marchand, 2013] versus 8 distinct states for a tropical location [Evans et al., 2012].
Disseminating differences between environmental properties conducive for cloud formation (such as
large-scale ascent) therefore is considerably more complicated at midlatitude locations such as the ARM
SGP site.

One requisite environmental condition needed for new ice crystal nucleation and subsequent growth is
saturation of relative humidity with respect to ice (RHI hereafter) [Heymsfield and Miloshevich, 1995]. In the
upper troposphere, RHI saturation can be achieved through a number of processes such as uplifting moisture
over an upper level ridge [Evans and Marchand, 2013], rapid wave-like fluctuations of temperature analogous
to gravity wave activity [Haag et al., 2003], and adiabatic cooling by large-scale uplift in the outflow region of
a warm conveyor belt [Spichtinger et al., 2005]. These processes have been linked to increased cirrus cloud
occurrence in several studies [e.g., Sassen and Campbell, 2001; Mace et al., 2006] though these processes
do not always explain microphysical variability within cirrus [Muhlbauer et al., 2014]. Rather, variability in
RHI could be a primary driver of microphysical variability although more investigation is needed to prove this
[Muhlbauer et al., 2014].

While the importance of RHI to cirrus cloud occurrence and maintenance are well understood qualitatively,
quantifying RHI presents numerous challenges. Observational studies involving RH/RHI are particularly diffi-
cult because of large uncertainties in the measurements themselves. Radiosonde measurements of RH have
the best vertical resolution (~10m) but suffer from large measurement uncertainty of 5% and, in the case of
daytime measurements for some sensors, have a well-documented dry bias induced by solar radiation [e.g.,
Vömel et al., 2007; Miloshevich et al., 2009; Wang et al., 2013]. Raman lidar measurements of water vapor,
unlike radiosondes, are not subject to dry-biased measurements but result in RH uncertainties of approxi-
mately 10% [Turner et al., 2007]. By comparison, model-reanalysis data sets such as European Center for
Medium-RangeWeather Forecasting (ECMWF) ERA-Interim reanalysis are readily available and offer complete
analyses (e.g., wind, temperature, and RH for specified height/pressure resolution) but rely on interpolation to
resolve quantities between model grid cells. Ovarlez et al. [2000] showed that ECMWF model-reanalysis data
underestimated RHI for low-temperature, humid conditions but captured the structure of RHI (and water
vapor mixing ratio) fairly well. Many studies have used RH/RHI data from sources such as model-derived
RH/RHI data [e.g., Berry and Mace, 2013], aircraft measurements [e.g., Heymsfield and Miloshevich, 1995],
and Raman lidar [e.g., Comstock et al., 2004] to aid in their analysis of cirrus cloud properties and processes.
To our knowledge, however, a long-term observational study of RHI measurements in midlatitude cirrus
clouds, especially when accounting for differing thermodynamic and dynamical regimes, has not been done
and thus is a key part of our study.

The goal of our study is to characterize RHI in cirrus clouds as a function of season and atmospheric state
using observational data sets and to assess any differences in RHI among the specified atmospheric states.
This study takes advantage of long-term ARM observational data sets from the MMCR and radiosonde, where
the moisture measurements from the latter were corrected using a recently published solar radiative dry bias
correction algorithm. Using these data sets allows any implications from the results (such as statistically
higher/lower RHI among distinct atmospheric states) to be well characterized in terms of measurement
accuracy and uncertainty. Ultimately, our study addresses the following questions:
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1. Given measurements of in-cloud, clear-sky, and above-cloud RHI over a sufficient period of time, do
seasonal variations in RHI exist?

2. How does RHI vary as a function of atmospheric state? If RHI varies significantly among atmospheric
states, can it be explained by seasonal differences?

3. If variations in RHI exist, whether by season or between atmospheric states, how do these variations
compare to the uncertainty of the RHI measurements?

The next section describes details regarding our definition of a cirrus cloud, our database of cirrus clouds
(derived from MMCR measurements), collocation of radiosonde and MMCR measurements, and the atmo-
spheric state classification algorithm used to segregate dynamical and thermodynamical regimes.

2. Data and Methods

This study used data from 7 years of observations collected at the Atmospheric Radiation Measurements
(ARM) program’s Southern Great Plains (SGP) site [Ackerman and Stokes, 2003; Sisterson et al., 2016] located
near Lamont, OK (36°, 36′, 18″N; 97°, 29′, 6.0″W). Data from this site are ideal for the study of midlatitude cirrus
clouds because of its location near the geographical center of the United States and the wide variety of
weather conditions experienced year round. This study makes heavy use of MMCR data [Moran et al., 1998;
Clothiaux et al., 1999; Kollias et al., 2007], Vaisala RS92 radiosonde data [Währn et al., 2004; Wang et al.,
2013], and an atmospheric state classification algorithm [Marchand et al., 2009; Evans and Marchand, 2013].
The following sections describe these data sets in more detail.

2.1. Millimeter-Wavelength Cloud Radar

The MMCR is a zenith pointing radar designed to measure the vertical occurrence of clouds, characterize the
microphysical composition of clouds, and to provide a detailed, long-term and continuous data set for
nonprecipitating andweakly precipitating clouds [Moran et al., 1998]. This instrument operates at a frequency
of 34.86GHz (8.7mm) and can measure radar reflectivity, Doppler velocity, and Doppler spectrum width
[Kollias et al., 2005]. The MMCR has four operation modes, each of which has different strengths and
weaknesses depending on the application [Moran et al., 1998], and these modes are interleaved at regular
intervals. MMCR Mode 2 data are the “cirrus” mode: pulse compression encoding gives the MMCR extra
sensitivity, allowing it to measure echoes as low as �50 dBZ. The dynamic range of the MMCR is from
�50 dBZ to 20 dBZ and has a vertical resolution of 90m. Updated operational modes with increased temporal
resolution have been tested and developed for the MMCR [Kollias et al., 2007]; however, updatedMode 2 data
were not available for use in this study. Regardless, the existing Mode 2 data remain a highly valuable tool for
characterizing cirrus clouds and hence is the data set of choice.

2.2. Vaisala RS92 Radiosondes

Radiosondes are balloon-borne measurement devices that measure profiles of temperature, humidity, and
wind and are known for their exceptionally high vertical resolution (~10m). Vaisala RS92 radiosondes are
among the most widely used radiosondes in the world and are used by around 30% of all global radiosonde
stations [Wang et al., 2013]. The high vertical resolution of Vaisala RS92 radiosondes as well as the availability
of this data (sondes of this type are launched four times per day at the ARM SGP site) makes this instrument
particularly appealing for the study of cirrus clouds.

The RS92 measures temperature using a thin capacitive wire sensor, where the measured voltage of the sen-
sor is proportional to the temperature. Temperature measurements are accurate to 0.2°C from the surface to
100 hPa, while above 100 hPa radiosonde temperature measurements are accurate to 0.3°C (http://www.vai-
sala.com/Vaisala%20Documents/Brochures%20and%20Datasheets/RS92SGP-Datasheet-B210358EN-F-LOW.
pdf). The total uncertainty in the temperature measurements is 0.5°C. RH measurements are made using a
pair of thin-film capacitive elements, where the measured capacitance of these elements is proportional to
the number of water vapor molecules in contact with the sensor. Radiosonde RH data have a total uncertainty
of 5% (additional uncertainty information can be found online in the website provided for the temperature
data). Using radiosonde temperature and RH data and noting that over 97% of our data occurs in
atmospheric layers warmer than �60C, saturation vapor pressure with respect to ice is computed using
the Goff-Gratch equation [Goff and Gratch, 1946]:
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After converting RH to vapor pressure (denoted e), RHI is computed with the following formula:

RHI ¼ e
esi

�100% (2)

Vaisala RS92 radiosonde RH data, especially before 2012, are known to be dry biased in the middle and upper
troposphere [Vömel et al., 2007]. The primary source of the RH dry bias is from solar radiative heating of the
humidity sensor [Vömel et al., 2007], while another (lesser) source of uncertainty includes errors in the calibra-
tion model [Miloshevich et al., 2009]. The temporal response time of the sensor, known as time lag, is another
potential source of uncertainty but is not considered because it contributes, at most, 1–2% error in RH [Wang
et al., 2013; Dzambo et al., 2016] and has a mean error of 0% [Dzambo et al., 2016]. A number of RS92 RH
correction algorithms have been developed [e.g., Cady-Pereira et al., 2008; Yoneyama et al., 2008; Rowe
et al., 2008; Miloshevich et al., 2009; Wang et al., 2013]. We advocate the use of the correction algorithms
proposed byMiloshevich et al. [2009] andWang et al. [2013], both of which are height-dependent corrections,
for two reasons (results not shown) [Dzambo et al., 2016]:

1. Both algorithms significantly improve the radiosonde’s RH profile such that precipitable water vapor
(PWV) derived from the Miloshevich et al. [2009] and Wang et al. [2013]. (The improvement in PWV for
theWang et al. [2013] RH correction algorithm (using PWV derived from a two-channel microwave radio-
meter) was also shown in Yu et al. [2015].) RH-corrected profiles is in much better agreement with the PWV
retrieved from ground-based microwave radiometers [Turner et al., 2007], whereas the PWV derived from
the original (uncorrected) radiosonde shows a large dry bias.

2. Computed infrared radiances using theMiloshevich et al. [2009] andWang et al. [2013] corrected profiles as
input compare better to AIRS radiance observations in water vapor sensitive wave numbers (i.e., 1300 to
2000 cm�1) than model-computed radiances derived from uncorrected RH measurements. The Wang
et al. [2013] RH correction decreases the bias in model-computed brightness temperatures (compared to
AIRS) between 0.2 and 0.3 K, while theMiloshevich et al. [2009] correction decreases this bias by 0.2 to 0.5 K.

Ultimately, we chose to use theWang et al. [2013] RH correction algorithm in this work because the correction
was developed using both clear- and cloudy-sky observations. The Miloshevich et al. [2009] algorithm is
intended for mainly clear skies. The use of theWang et al. [2013] algorithmmakes practical sense considering
that the focus is on cirrus clouds. The RH correction formula and all constants are defined in section 2b of
Wang et al. [2013].

2.3. Cirrus Cloud Detection Algorithm

To get the best possible representation of cirrus clouds from the 7 years of data available to us, we designed
an algorithm that captures cirrus cloud “events” from the MMCR data set. Although MMCR Mode 2 data are
sensitive to echoes as low as �50 dBZ, we used �35 dBZ as a lower limit to minimize noisy measurements.
Furthermore, we used the following criteria (with the reflectivity measurements) as a baseline for our defini-
tion of a cirrus cloud event:

1. The minimum altitude in which we define a cirrus cloud is dependent on the height of the troposphere:

a. The height of the troposphere is determined from radiosonde measurements and interpolated to
match the time resolution of the MMCR (i.e., ~10 s).

i. Theminimum altitude is determined between these twomethods: (i) 55% of the height of the tropo-
sphere and (ii) the first altitude where the temperature decreases below �10°C.

ii. If the minimum altitude was determined based on the fractional height of the troposphere, the
height is recorded as a minimum threshold. If the temperature criteria were used, the maximum
altitude is determined through the following two methods: (i) 50% of the height of the troposphere
and (ii) the first altitude where the temperature decreases below �10°C.

2. There is nominimum thickness requirement, but reflectivity measurements must be (at minimum) contig-
uous at the altitude of the reflectivity measurement at ±90m from the previous time step for a minimum
of 15min.
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3. An event ends under one of the following two subcriteria:

a. When no contiguous reflectivity measurements are found within 30min of the last set of reflectivity
measurements (i.e., gaps of less than 30min are allowed within an event to account for thin, patchy
cirrus clouds advecting over the SGP site). This assumes that criterion #2 is already met.

b. When reflectivity measurements extend from the threshold height (determined in step 1) to 2 km
above the threshold height. In this case, all reflectivity measurements occurring within ±30min are
excluded from the cirrus cloud mask.

Part b of step 3 in the above criteria is essential to excluding cloud events that could be mistaken for deep
convection or very thick midlevel clouds.

Figure 1a shows MMCR reflectivity measurements for 24 h (in UTC time) on 3 June 2009. A thick cirrus cloud is
observed from around 02:30 to around 14:00 UTC, and later a shallower cirrus cloud is measured from just
before 16:00 to after 24:00. Figure 1b demonstrates how two cirrus cloud events (red mask) were identified:
both cirrus events were separated by over 1 h while remaining above the height threshold determined in
step 1 of the prescribed algorithm. All reflectivity measurements below the height threshold have a blue
mask and are excluded as candidate cirrus cloud cases for study. In this example and for all other candidate
cases, the cirrus event definition allows for easier and clearer matching with radiosonde observations while
providing additional metadata (e.g., cirrus event duration) for interpreting the results involving the atmo-
spheric state classifications of cirrus cloud RHI. Overall, there are 2267 cirrus cloud events identified from
our analysis (averaging to ~0.9 cirrus events per day), including the two events presented in Figure 1.

At this step, radiosonde data are incorporated into the analysis. The first challenge is ensuring that the radio-
sonde measurements are collocated with the appropriate MMCR measurements. When a radiosonde is

Figure 1. (a) MMCR reflectivity measurements and (b) cloud masks (cirrus cloud masks are colored red) for 3 June 2009 at the ARM SGP site. The dashed line in
Figure 1a represents the minimum height threshold (the method is described in the text). The vertical dashed lines in Figure 1a represent the 05Z, 11Z, 17Z, and
23Z radiosonde launch times (respectively) after accounting for time lag, as described in the text. The vertical dashed lines in Figure 1b represent the beginning of
two cirrus cloud events.
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launched, it can take a half hour or more to reach altitudes above 6 km. Also, horizontal wind speeds below
3 km are considerably slower (i.e., ~10m/s) than those wind speeds in the middle and upper troposphere (i.e.,
~20m/s or greater). Thus, a cirrus cloud sampled at the instant the radiosonde is launched will initially travel
farther downwind than the radiosonde. For this reason, we imposed a “lag time” on the radiosonde measure-
ments, which is computed as the following:

Δt ¼ zcloud
mean Δz

Δt

� �
sonde

(3)

where zcloud is the median cirrus cloud event height and mean(Δz/Δt)sonde is the mean radiosonde ascent
rate from ground level to the median height of the cirrus cloud event. This time is subtracted from the radio-
sonde launch time to best approximate when the radiosonde and MMCR measure roughly the same altitude
(over the same place). The aforementioned methodology is presented with reasonably high confidence:
given that the majority of cirrus cloud events last longer than an hour, radiosondes can fully measure a cirrus
cloud before the event ends provided that the radiosonde is launched far enough in advance to the end of
the event. We tested the sensitivity of our results to this lag time for Δt± 10min and found that our results did
not significantly change. This is especially important for radiosonde observations in “patchy” cirrus cloud
events, where a short time difference could result in the radiosonde ascending through clear skies instead
of the intended cirrus cloud. Therefore, it is reasonably safe to assume that for the short time periods (i.e.,
~1 h), the radiosonde (once it rises above the boundary layer) and the cirrus cloud will travel at approximately
similar speeds and in a very similar direction. Under this assumption, the radiosonde will ascend through the
sampled cirrus cloud.

To verify the matching of cloud boundaries between the radiosonde and MMCR data, we computed the
average distance between the cirrus cloud top altitudes that were computed using two distinct methods:

1. The cloud top altitude is the highest altitude with significant reflectivity observed by the MMCR.
2. The cloud top altitude is the height where the RHI is the largest in the profile, since the highest RHI in

cirrus clouds are typically observed near the cloud top.

We found that the median difference between the two estimates was 50m, with the RHI-estimated cirrus
cloud top being lower than the uppermost significant echo from the MMCR. Because this difference falls
within the range resolution of the MMCR, we believe that the MMCR and radiosonde are accurately collo-
cated at the cloud top.

Verifying the radiosonde/MMCR matching at cloud base, however, is more challenging. Reflectivity measure-
ments at cloud base are almost always indicative of precipitating ice crystals falling into subsaturated air;
thus, discerning a clear-air layer from a precipitating ice crystal layer is not possible with the data sets used
in this study. However, we show later that RHI measurements less than 60% occur 20–35% of the time, a
result that is consistent with the RHI statistics shown in Comstock et al. [2004], which used perfectly collocated
and validated measurements of water vapor and backscatter from Raman lidar in cirrus clouds. Thus, we feel
that our results, which are statistics derived from hundreds of cases, have relatively small mean sampling
error despite the inherent limitation and challenge of collocating the radiosonde and MMCR measurements.

In addition to ensuring the best possible collocation between the radiosonde and MMCR measurements, the
cloud itself must be screened to ensure that it is composed entirely of ice. An MMCR observation is consid-
ered a cirrus event if it passed the previous altitude and longevity requirements and all RH (with respect to
water) measurements taken inside the cirrus cloud are less than 95%, thereby eliminating any liquid or
mixed-phase clouds.

Figure 2 shows the profiles of RHI collocated with Figure 1. In Figures 2a and 2b, the radiosonde is ascending
through a cirrus cloud deck approximately 4 km in depth. At the base of the cloud indicated in Figures 2a and
2b, the MMCR is measuring portions of the cirrus cloud in an evidently dry layer (between 8 and 9 km) while
RHI nears ~110% near the top of the cloud. The structure of RHI between Figures 2a and 2b, however, varies
through the middle of the cloud. Specifically, a layer of subsaturated RHI exists between 10 and 11.5 km in
Figure 2b, whereas RHI steadily increases from 9 to 12 km in Figure 2a. Patchy cirrus with clearly observable fall
streaks are evident in the secondcirrus event on this day (Figures 1 and2d). Inparticular, theRHI is subsaturated
in the bottom andmiddle portions of the cloud (Figure 2d) and supersaturated near the top, where RHI sharply
decreases just above the MMCR-observed cloud top and becomes supersaturated again. Figure 2d highlights
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the variability in RHI that is observed in patchy cirrus—especially during the summer when the atmosphere is
generally less active at the SGP site.

Using our definition of a cirrus cloud event, 1076 cases (i.e., cirrus cloud events) were identified and are
included in the analysis. The sampled cirrus clouds (within the defined cirrus events) have an average
geometric thickness of 1.74 km, which is a bit shallower than the 2.0 km thickness reported in Mace et al.
[2001]. Cirrus clouds generally reside between 8 and 10 km from October to April, while cirrus clouds often

occur between 10 and 12 km from May
to September (Figure 3). Additional
statistics of the radiosonde-sampled
cirrus clouds are presented in Table 1
(the atmospheric state classifications
are described in the next section). It
should be noted that the altitude of cir-
rus cloud tops might be underestimated
by the MMCRmeasurements [Borg et al.,
2011], and therefore, the cloud top alti-
tude and temperature, as well as cirrus
cloud thickness, statistics in Table 1
may be slightly low biased. This limita-
tion is especially important for optically
thick clouds, because this bias is more
likely to be observed in thick cirrus
(some evidence of this bias is seen in
Figures 2a and 2c, where the measured
cloud top is lower than the height of
the supersaturated RHI layer). We will
address this caveat in section 2.5.

Figure 3. The median altitude (measured from the center of individually
sampled cirrus clouds) of cirrus clouds versus month of year. The 10th
through 90th percentile of data is represented in each box-and-whisker
plot. The red rectangles above each box-and-whisker plot represent the
25th through 75th percentile of tropopause height for that month, where
tropopause height was derived from the radiosonde data.

Figure 2. Profiles of RHI derived from SGP radiosondes at (a) 05Z, (b) 11Z, (c) 17Z, and (d) 23Z for 3 June 2009. Each
radiosonde, using the algorithm described in the text, was collocated with cirrus cloud event 1 or 2 shown in Figure 1.
The launch times were adjusted for time lag according to equation (3). The horizontal dashed lines indicate the collocated
cloud boundaries.
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2.4. Atmospheric State Classification Algorithm

The cirrus cloud events are grouped into atmospheric state classifications as defined by Marchand et al.
[2009]. In their study,Marchand et al. [2009] used a self-organizing map neural network (i.e., pattern recogni-
tion) algorithm to define a set of atmospheric states for a domain centered over the ARM SGP site. The
algorithm ingested 3 years of Rapid Update Cycle as input, resulting in 12 unique atmospheric states. The
algorithm was updated in 2012 [Evans and Marchand, 2013] to utilize 13 years (from 1997 to 2010, at 6 h time
intervals) of ECMWF ERA-Interim reanalysis data and ARM Ka-band radar data. The updated algorithm
resulted in 21 atmospheric state classifications, which are grouped into five parent classifications.
Considering that our study involves upper tropospheric cirrus, the five parent classifications and their typical
upper tropospheric characteristics are as follows:

1. Anticyclone (Marchand et al. states 1, 7, and 13). An upper level ridge is centered over the domain (with
westerly/northwesterly flow in the middle/upper troposphere) and is accompanied by a surface
anticyclone.

2. Southerly (Marchand et al. states 4, 5, 8, and 17). A southerly or southwesterly flow regime dominates over
the domain (near the surface and in the middle/upper troposphere).

3. Cold front (Marchand et al. states 12, 14, 18, and 20). These states represent the progression of a cold front
across the domain, including two-prefrontal, a postfrontal, and frontal-passage subclassifications.

4. Northerly (Marchand et al. states 2, 6, 16, 19, and 21). Strong surface northerly winds become
westerly/northwesterly with height and typically follow cold front states.

5. Summer class (Marchand et al. states 3, 9, 10, 11, and 15). These states are warmer than the other 16
Marchand et al. atmospheric states and typically have near-surface southerly winds becoming westerly
with height.

Further detail about the atmospheric state classification algorithm and updated atmospheric states can be
found in Marchand et al. [2009] and Evans and Marchand [2013]. In cases where a cirrus cloud lasts longer
than 6 h (which occurs approximately 15–20% of the time, depending on the classification), RHI data are
binned according to the atmospheric state at radiosonde launch time.

2.5. Analysis Techniques

This study quantifies RHI and other variables as a function of the five parent classifications, which generalize
the atmospheric states dynamically and thermodynamically. However, analysis from individual subclassifica-
tions will complement this study where appropriate because certain characteristics among states within a
parent class do vary considerably. For brevity, we will use “atmospheric states” or “classes” throughout the
rest of this paper to refer to the five parent classifications and not the 21 individual atmospheric states
comprising their respective parent classifications. Seasonal analyses of RHI are also shown to contextualize
the atmospheric state classification analyses because each class is at least somewhat dependent on season-
ality (Table 2).

Previous studies have shown that the greatest frequency of saturated RHI measurements occurs near the top
of the cloud [Heymsfield and Miloshevich, 1995; Comstock et al., 2004]. Following the methodology described
in Comstock et al. (2004), we characterize the vertical distribution of RHI in cirrus clouds by using the
median value in the top 25%, middle 50%, and bottom 25% of the cloud. Emphasis will be placed on the
top 25% and bottom 25% regions because, in general, the maximum RHI measured within cirrus clouds
occurs near the top of the cloud (Figure 4) and RHI near the base of the cloud can proxy the likelihood of
sublimating/evaporating ice crystals.

Table 1. Basic Statistics of the Radiosonde-Sampled Cirrus Clouds (1076 Total) for the 7 Year Period From January 2004 to January 2011a

Number of Samples
(% of Total)

Cirrus Event
Duration (Hours)

Cloud Base
Altitude (km)

Cloud Top
Altitude (km)

Cloud
Thickness (km)

Cloud Base
Temperature (C)

Cloud Top
Temperature (C)

Summer 347 (32.2) 1.8 ± 2.8 10.0 ± 1.0 12.0 ± 1.1 1.7 ± 1.1 �36.8 ± 7.4 �52.8 ± 7.7
Anticyclone 125 (11.6) 2.0 ± 2.9 8.9 ± 1.0 10.6 ± 1.1 1.8 ± 1.0 �38.2 ± 6.9 �53.7 ± 5.9
Cold front 159 (14.8) 1.8 ± 2.8 8.6 ± 1.3 10.7 ± 1.5 1.9 ± 1.1 �35.7 ± 7.4 �52.3 ± 7.7
Southerly 294 (27.3) 2.2 ± 3.1 8.8 ± 1.1 10.9 ± 1.2 1.7 ± 1.2 �38.1 ± 7.9 �54.9 ± 6.9
Northerly 151 (14.0) 1.6 ± 2.6 8.4 ± 1.3 10.0 ± 1.4 1.4 ± 1.0 �36.8 ± 7.1 �49.1 ± 6.8

aAll data are represented as the median ±1 standard deviation.
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For the majority of our analyses, we chose to aggregate data according to the state classification and cloud
region. One caveat to aggregating data in this fashion is that thick cirrus clouds (greater than 3 km in depth)
have a greater number of points per sample compared to thin cirrus clouds (i.e., less than 1 km in depth). For
example, a 3 km thick cloud sampled at 10m vertical resolution will have 300 points, whereas a 1 km thick
cloud at the same vertical resolution will have 100 points. By contrast, the number of points sampled by
the MMCR for each case would be ~30 and 10 points, respectively. To avoid biasing our results toward thick
clouds, we normalized all profiles (from the radiosonde and MMCR) to a 100-point profile. Although this
number is somewhat arbitrary, we chose this number because it maintains the structure of the original profile
for all clouds (i.e., maximum and minimum values and shape of profile). Our results are not sensitive to the
number of points in the normalized profiles (not shown). Finally, for the majority of the analyses, results
are shown as box-and-whisker plots from the 10th to 90th percentiles. Normalizing data profiles and
aggregating them as described means, for example, cloud base and cloud top RHI are shown such that each
radiosonde-sampled cirrus cloud contributes 25 points to the aggregated data set.

As pointed out in Borg et al. [2011], the MMCR can underestimate the altitude of the top of a cirrus cloud espe-
cially if there are small particles at the top of the cirrus layer. By not observing the top of the cirrus, significant
outgoing longwave flux biases of about 16 to 20Wm�2 can occur [Borg et al., 2011; Protat et al., 2014], while
some biases are as large as 100Wm�2. The underestimation in geometric depth, however, is usually no more
than a couple hundred meters [e.g., Sassen and Khvorostyanov, 1998]. Because the top region of the cloud is
generally where new ice crystal nucleation takes place (and hence where RHI tends to reach peak saturation),

we also analyze RHI above cloud. We
define “above cloud” as the depth
extending 180m from the measured
cloud top, where 180m is analogous to
two MMCR range gates (recall that the
vertical resolution of the MMCR Mode
2 data is 90m). To clarify, our definition
of above cloud accounts for RHI that is
likely within the cirrus cloud layer but,
due to the MMCR’s measuring limita-
tions, was identified at an altitude(s)
where the MMCR did not detect a cloud.

We further investigate the potential for
new cirrus cloud growth by analyzing
clear-sky RHI as a function of atmo-
spheric state. Radiosonde observations
that occur during a period when the
MMCR does not measure any reflectivity
echoes greater than �35 dBZ through
the duration of the radiosonde’s flight
time are considered a clear-sky scene.

Figure 4. Median profiles showing the occurrence of maximum RHI
relative to the depth of the cloud in which the maximum RHI was
measured. The colored lines denote profiles for specific classifications,
while the superimposed thick black line shows the median for all cases
(1076 cases total; refer to Table 1 for the number of cases in each profile).

Table 2. The Number of Cirrus Cloud Cases to the Number of Clear-Sky Scenes for Each Season (Winter, Spring, Summer,
Fall, and All Seasons From Left to Right) With the Percentage of Cirrus Cloud Cases (to the Total Number of Cirrus Cloud
and Clear-Sky Cases) Shown in Parenthesesa

Classification DJF MAM JJA SON All Seasons

Summer NA 31/63 (33.0%) 266/360 (42.5%) 50/79 (38.8%) 347/502 (40.9%)
Anticyclone 47/83 (36.2%) 39/105 (27.1%) NA 27/58 (31.8%) 125/252 (33.2%)
Cold front 45/93 (32.6%) 61/129 (32.1%) NA 37/78 (32.2%) 159/325 (32.9%)
Southerly 89/84 (51.4%) 139/181 (43.4%) NA 59/86 (40.7%) 294/356 (45.2%)
Northerly 79/205 (27.8%) 40/113 (26.1%) NA 22/69 (24.2%) 151/413 (26.8%)

aThe number of clear-sky scenes was determined using radiosonde and MMCR data over the specified time period,
where RHI measurements less than 95% and no reflectivity measurements over �35 dBZ constituted a clear-sky scene.
Seasons where fewer than 30 observed (combined) cirrus clouds or clear-sky scenes are not shown. DJF: December-
January-February. MAM:March-April-May. JJA: June-July-August. SON: September-October-November. NA: not available.
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For all available cirrus cloud cases (1076
total), a Monte Carlo sampling tech-
nique is applied to analyze clear-sky
RHI. The steps to this technique are as
follows:

1. For a given cirrus cloud, a clear-sky
sounding with the same atmo-
spheric state classification is ran-
domly selected.

2. A subset of RHI measurements (from
the same altitudes as the cirrus
cloud) is taken from the clear-sky
sounding.

3. The subset data are further parsed
into the bottom 25%, middle 50%,
and top 25% regions, analogous to
the measured cirrus cloud.

4. The median RHI from the respective regions is recorded and grouped into the appropriate classification.

One important discussion point in this study is the relevance of our results to the uncertainty in the measure-
ments. Since RHI is a function of both RH and temperature, we computed uncertainty in RHI using the total
uncertainty for radiosonde temperature (ΔT=0.5°C) and RH (ΔRH=5%) in the following root-mean-square
error formula (following Immler et al. [2010, equation 2]):

ΔRHI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHI T ; RHð Þ � RHI T þ ΔT ; RHð Þ½ �2 þ RHI T ; RHð Þ � RHI T ; RHþ ΔRHð Þ½ �22

q
(4)

In general, total RHI uncertainty is approximately 7.0–7.5% in the cloud base region, 8.0–8.5% in the cloud top
region, and between 8.0 and 9.0% above the cloud top region. Daytime RHI measurements, which were
corrected for the solar radiation-induced dry bias using Wang et al. [2013], are subject to an additional 2%
uncertainty due to the uncertainty in the quantities hf (heating factor; accounts for the heating of the RH
sensor relative to the temperature sensor) and cf (adjustment factor; accounts for cloud coverage) that are
a part of the correction equation (additional details are given in Wang et al. [2013]). Despite this additional
uncertainty, there are no significant differences in our results when evaluating them diurnally (result not
shown). Finally, the uncertainty in RHI does not vary significantly among the five classes.

3. Results and Discussion

The thermodynamic environments among the five classifications vary considerably, thus influencing the RHI.
Approximately 94% of all cirrus clouds observed in this study had at least a portion of the cloud that
was colder than �40°C, but among the classifications, the percentage of cirrus clouds that were entirely
colder than �40°C varies considerably (Figure 5). The anticyclone class contains the highest percentage of
cases where the entire cirrus clouds were entirely colder than �40°C, whereas the cold front class has the
lowest percentage.

This is also reflected in the percentage of cirrus cloud cases from the five classifications where the highest RHI
exceeded 140% (Table 3). In the anticyclone class, 3.2% of all sampled cirrus clouds had a maximum RHI

Figure 5. The percentage of cirrus clouds existing in temperatures
entirely warmer than �40°C (red) and entirely colder than �40°C (blue).

Table 3. The Percentage of Cirrus Clouds in Each Parent Classification Where RHI Exceeds 100%, 120%, and 140%

Classification
Percent of Cases
Where RHI> 100%

Percent of Cases
Where RHI> 120%

Percent of Cases
Where RHI> 140%

Summer 71.4% 21.7% 1.4%
Anticyclone 78.2% 29.0% 3.2%
Cold front 74.5% 24.8% 0.6%
Southerly 76.1% 29.5% 1.4%
Northerly 71.5% 25.8% 1.3%
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exceeding 140%, while maximum RHI in the cold front class exceeded 140% only 0.6% of the time (Table 3).
Although we do not explicitly resolve ice nucleation mechanisms in this study, these statistics of temperature
and RHI agree with the results presented in Cziczo et al. [2013]. As pointed out byMace et al. [2006], however,
cirrus clouds measured by the MMCR are likely generated several kilometers upstream of the measurement
location; thus, we cannot make definitive statements relating classifications, RHI, and ice nucleation.
Regardless, even though a very small percentage of cirrus clouds observe RHI greater than 140%, ice super-
saturation occurs between 70 and 80% of the time depending on the classification (Table 3).

The frequency in which a classification occurs is at least somewhat tied to the annual cycle, which means that
the thermodynamic regimes characteristic of each classification are dependent on season. Table 4 reveals a
seasonal trend in cirrus cloud RHI: a minimum in RHI (for all three cloud height regions) is observed during the
summermonths, whereas a maximum occurs in the winter months. When comparing themiddle and bottom
regions of cirrus clouds during the spring and fall, slightly higher RHI (~4%) is observed in the fall. Median
cirrus cloud RHI for each month of the year is shown in Figure 6 and shows how monthly variations in cirrus
cloud RHI evidence seasonality (note that a similar result was found when using maximum RHI instead of
median RHI, but this is not shown). The seasonal trend in cirrus RHI does not necessarily correlate with overall
cloud occurrence; based on our sampling, we observe more cirrus clouds during the summer compared to
the winter (310 to 258 cases, respectively), and more cases are observed in the spring compared to the fall
(307 to 195 cases, respectively). These observations are consistent with Mace et al. [2006] where a minimum
in cirrus cloud occurrence was observed in the late summer/early fall (i.e., September) and an observed
increase in cirrus occurrence began in March. Wylie et al. [1994] also found an increased occurrence of cirrus
clouds in the summer compared to the winter. Overall, the link between cirrus cloud occurrence and RHI
observed within cirrus clouds is somewhat contradictory and therefore not entirely explained by seasonal
thermodynamic regimes.

In the winter months, RHI through the
depth of cirrus clouds is highest com-
pared to any other season (Table 4).
We also find an increased percentage
of cirrus cloud scenes compared to
clear-sky scenes (Table 2) in the winter
months versus any other season. The
southerly class stands out as having
both the highest frequency of cirrus
clouds relative to clear-sky scenes
(51%) and the highest RHI in every cloud
region for the winter, where both the
middle and top regions have a median
RHI exceeding 100%. These observa-
tions suggest that the dynamical and
thermodynamical regimes represented
in the southerly class are most condu-
cive for wintertime cirrus formation.

Table 4. Median RHI (in %) for the Cloud Bottom, Middle (Bolded), and Top Regions (From Left to Right) as a Function of
Season and Atmospheric Statea

DJF MAM JJA SON

Summer NA 74.9, 85.9, 101.4 76.5, 93.5, 103.4 81.4, 104.7, 114.1
Anticyclone 89.2, 98.0, 104.7 80.7, 98.9, 113.1 NA 82.0, 99.2, 109.3
Cold front 79.0, 95.8, 106.1 89.3, 96.6, 110.6 NA 85.7, 97.1, 105.1
Southerly 93.2, 103.7, 115.4 79.7, 94.2, 108.4 NA 78.6, 96.7, 109.1
Northerly 88.1, 98.0, 109.5 78.0, 91.0, 109.4 NA 86.1, 100.7, 115.6
All states 88.7, 99.3, 110.3 80.7, 94.1, 108.8 76.5, 93.8, 104.1 83.1, 98.6, 109.9

aThe seasonal median RHI for the cloud bottom/middle/top regions is given in the bottom row. Seasons where fewer
than 30 observed (combined) cirrus clouds or clear-sky scenes are not shown.

Figure 6. Box-and-whisker plots (10th through 90th percentile) of median
cirrus cloud RHI for each month of the year (January through December,
left to right).
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For example, the jet stream (often represented in the southerly classification) [Muhlbauer et al., 2014] is stron-
gest over the continental U.S. during the wintertime. Vertical motions induced at the entrance/exit regions of
a jet streak are stronger, and given that the midlatitude atmosphere is driest during the winter, stronger
upward vertical motion would induce faster adiabatic cooling [Spichtinger et al., 2005] and therefore higher
observed RHI values. Cirrus clouds are more likely to occur in the winter as a result of midlatitude cyclones
and jet streams compared to the summer [Mace et al., 2001].

There is a caveat to the wintertime median RHI through the cloud depth: all nonsoutherly class cirrus has RHI
(with one exception for one region) below the seasonal median values for the three cloud height regions. We
suspect that because southerly class cirrus account for 34% of all wintertime cases, the (statistically higher)
RHI weights the seasonal RHI median values higher. Dynamically, the southerly class is most similar to the
cold front class; however, RHI is generally smaller through the depth of the cloud likely because the
atmosphere is overall warmer (Table 1 and Figure 5). This reasoning is consistent with Mace et al. [2006]
where they found that cirrus most often occurs in regions of maximum RH downstream of maximum vertical
motion—a description analogous to a southerly state [Evans and Marchand, 2013]. We conclude, for winter-
time cirrus, that new cirrus formation is especially favorable in the southerly class because the characteristic
thermodynamic and dynamical regimes stimulate vertical motions (i.e., adiabatic cooling) that lead to high
values of RHI.

Median cirrus cloud RHI is higher for all cloud regions in the fall compared to the spring, but there is consider-
able RHI variability among the classifications comprising each season. Unlike the winter season where south-
erly cirrus has the highest overall observed RHI, cirrus in the anticyclone class has the highest median RHI for
the middle and top regions in the spring. Despite having similar thickness, cloud base and top temperature,
and cloud base and top altitude (Table 1), cirrus still form more frequently in the southerly class compared to
the anticyclone class (43% to 27%; see Table 2). A similar phenomenon is observed in the fall: median RHI is
higher in each cloud region for anticyclone class cirrus compared to southerly class cirrus (although the RHI
difference between each region does not exceed 4%) even though a higher frequency of cirrus is observed in
the southerly class (41%) compared to the anticyclone class (32%). The dynamical regimes characterizing the
anticyclone and southerly classes are nearly opposite; upper level large-scale subsidence occurs in the antic-
yclone class, whereas large-scale rising motions occur in the southerly class. According to Evans and
Marchand [2013], subclass 13 of the anticyclone class differs from the other two subclasses because moisture
is found overrunning the upper level ridge over the SGP site. In our study, cirrus from subclass 13 accounts for
45% of the cirrus in the anticyclone class and RHI from this subclass is generally 2–5% higher on average
compared to the other two subclasses (result not shown). This information explaining the high RHI values
found in the anticyclone class, coupled with the characteristic dynamical regime of the southerly class,
suggests that favorable dynamical environments (as opposed to regions of high RHI) are more responsible
for cirrus cloud occurrence.

This hypothesis is further corroborated by cirrus cloud RHI from the northerly class. When comparing the
anticyclone and southerly classes to the northerly class, we find the values of RHI in the northerly class to
be slightly less overall although this difference is not statistically significant (Figure 7). Cirrus occurrence in
the northerly class is the lowest (27%) compared to all other classifications (Table 2). Similar to the anticyclone
class, the environmental dynamics associated with the northerly class are unfavorable for cirrus cloud devel-
opment. A northerly state typically follows a cold front state [Evans and Marchand, 2013], which implies that
an upper level ridge (which promotes rising surface pressure) builds in over the SGP site. Thus, many cirrus
clouds observed in the northerly class are likely residual (dying) clouds from a cold front state (more evidence
of this process will be presented later). Another important note involves above-cloud RHI: this quantity does
not vary significantly among the anticyclone, southerly, and northerly classes even though northerly class
cirrus clouds are statistically thinner and have shorter lifetimes compared to the other classes (Table 1). We
conclude, based on this result, that our statistics of RHI in the cirrus cloud top region are unaffected by the
MMCR’s low cloud top altitude bias described in Borg et al. [2011] and Sassen and Khvorostyanov [1998].

Summer class cirrus clouds are unique from cirrus in the nonsummer classes due to their statistically lower
observed values of RHI but generally high rate of occurrence (41%). Cirrus clouds forming in the summer class
are less likely to form from synoptic-scale weather systems; if anything, localized convective towers (analo-
gous to “pop-up” thunderstorms or something similar) are responsible for most dynamically induced cirrus
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formation. Otherwise, cirrus events in the summer class are mostly patchy and evidenced by the shorter time
duration (~1.8 h; see Table 1) compared to the southerly and northerly classes. Despite the lack of large-scale
vertical motions in the summer state, what explains the higher rate of cirrus occurrence? Kärcher et al. [2014]
used a Large Eddy Simulation model to demonstrate differences in cirrus macrophysical properties when
accounting for slow (weakly damped RHI fluctuations) and fast (strongly damped RHI fluctuations) uptakes
of water vapor by ice crystals. Their results showed that RHI is generally lower when fast water vapor uptake
by ice crystals occurs but that RHI could be maintained if there is upward vertical motion of at least 4 cm/s.
Given that the summer classification is overall less dynamically active compared to the other classifications,
the work presented in Kärcher et al. [2014] offers at least one plausible hypothesis explaining why summer
cirrus has statistically lower RHI. Another explanation could be potential radiosonde/MMCR mismatching
because of the larger number of patchy cirrus cloud cases in this classification.

Our analysis thus far has covered cirrus RHI and how this quantity varies in thermodynamic (seasonal) and
dynamical (atmospheric state) regimes; however, variability in cirrus cloud RHI is observed when accounting
for cloud (geometric) thickness (Figures 8a1–8a3). For thin cirrus clouds, median observed RHI is ~70–80% at
the cloud base and ~90–100% near the cloud top (Figure 8a1). Thick cirrus clouds, by contrast, have median
observed RHI values of 45–80% near the cloud base and 85–105% near the top of the cloud (Figure 8a3).
Variability in median reflectivity measurements for different synoptic classifications is also observed for
thicker cirrus clouds (Figures 8c1–8c3); this finding corroborates withMace et al. [2001], where greater macro-
physical variability was observed in thick cirrus clouds compared to thin cirrus clouds. Using reflectivity as a
proxy, we also see macrophysical variability among the five classifications. Figure 8c3, for cirrus clouds thicker
than 3 km, shows that the highest median reflectivity values are observed for cold front cirrus followed
closely by northerly cirrus. Recall that a northerly class generally follows a cold front class, and given the
dynamical regimes associated with a northerly class, cirrus in this class likely formed in a cold front class
and are thus likely clouds in the decaying phase of their lifecycle (recall that cirrus in the northerly class is
statistically thinner from the other classes). Both of these classes have cirrus clouds forming in slightly warmer
environments compared to the southerly and anticyclone classes (Table 1), therefore leading to higher
median ice water content (IWC; result not shown). Mace et al. [2001] explained that IWC tends to scale
exponentially with higher temperature, thus corroborating our results. For clouds thicker than 3 km,
Figure 8b3 reveals a moisture inversion at the base of northerly cirrus clouds, and Figure 8a3 shows lower
median RHI through the depth of this cirrus for this class compared to the other four classes. Overall, this
evidence supports the idea that northerly class cirrus is indeed residual cold front class cirrus.

Figure 7. Box-and-whisker plots (10th through 90th percentile) of RHI in the bottom 25% region (far left), middle 50%
region (middle-left), and top 25% region (middle-right) of sampled cirrus clouds, along with above-cloud RHI (far right),
for the five parent classifications.
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Using the Monte Carlo sampling technique described in section 2.5, we find substantial differences in RHI
under clear-sky conditions (Figure 9). Clear-sky RHI is highest overall in the anticyclone and southerly classes,
which follows previous results showing that RHI is particularly high in these two classifications. Clear-sky RHI
in the cold front state is lowest overall, likely because a majority of the clear-sky cases observed for a cold

Figure 9. Box-and-whisker plots (10th through 90th percentile) of RHI measured in clear-sky scenes using the Monte Carlo
sampling technique described in the text.

Figure 8. Profiles of (a1–a3) median RHI (in %), (b1–b3) water vapor mixing ratio (in g/kg), and (c1–c3) reflectivity (in dBZ)
normalized by cloud depth (0 represents the cloud base, and 1 represents the cloud top). The vertical bin spacing is 0.1
altitude units (i.e., there are 10 bins). The summer, anticyclone, cold front, southerly, and northerly classes are represented
by the colors red, blue, purple, green, and gray, respectively.
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front class are postfrontal. Summertime clear-sky RHI is also particularly low, though the computed interquar-
tile ranges are larger compared to the cold front class. Overall, given that the southerly and anticyclone
classes have the highest overall clear-sky RHI, we suspect that these two classes—compared to the other
two classes—are better able to support new cirrus cloud development and maintenance.

4. Conclusions and Future Work

In this study, a seasonal dependence is found for cirrus cloud RHI, wheremaximumRHI is observed during the
winter and minimum RHI is noted for the summer. When accounting for seasonality and atmospheric state,
cirrus cloud RHI varies considerably. In most cases, the variations in RHI (among the prescribed cloud regions)
are within the measurement uncertainty and only the summer class has statistically lower RHI compared to
the other classes. The magnitude of the observed RHI in cirrus clouds is not correlated with overall cloud
occurrence frequency, as was noted in this study and in previous studies such as Wylie et al. [1994] and
Mace et al. [2006]. The southerly class stands out as having the highest overall RHI in cirrus clouds, likely
because the thermodynamic and dynamical regimes characterizing this class favor both high RHI and
increased cirrus cloud occurrence. Cirrus cloud RHI is not statistically different among the nonsummer classes,
however, though we find that cirrus in the anticyclone has consistently high RHI as well. We therefore spec-
ulate that for cirrus clouds forming in dynamically unfavorable environments, higher overall RHI compen-
sates for the lack of dynamics that would otherwise favor new cirrus cloud development. We suspect that
the lower frequency of cirrus in the winter, relative to the summer, is because more atmospheric states char-
acterizing the winter have dynamical regimes unfavorable for new cirrus cloud development (i.e., anticyclone
and northerly classes). Overall, our results support previous studies such asMace et al. [2006], Berry and Mace
[2013] and others showing that large-scale dynamical regimes are most important to explaining variability in
cirrus cloud macrophysical and microphysical properties.

Using our results, we hope that future studies can provide additional insight linking cirrus cloud occurrence
to RHI for a midlatitude site. We feel that this is especially important for summertime cirrus; although a high
frequency of cirrus clouds is observed in the summer class, the reason that this occurs—especially when
accounting for RHI—is not fully understood. One hypothesis could be that during the North American
monsoon (which takes place during the summer), cirrus is more easily formed in the eastern Pacific Ocean
and advected over the SGP site (we note that based on the radiosonde data, 48% of the cirrus observed in
the summer class advected from the southwest, compared to 34% from the northwest). Low RHI due to
strong water vapor diffusion onto newly forming ice crystals, as discussed in Kärcher et al. [2014], is one
plausible explanation. Regardless, the lack of definitive results for the summer class is at least partly mani-
fested in the fact that midlatitude cyclones and overall weak disturbances are binned in the summer class
because geopotential heights are very high—thus generalizing this classification more on thermodynamic
regimes compared to dynamical regimes. Therefore, further work on this subject will employ a more detailed
atmospheric state classification of the SGP site, such as the scheme outlined in Kennedy et al. [2015], which
also used the methodology of Marchand et al. [2009].

For midlatitude locations such as the ARM SGP site, a vast number of processes occur that influence the
occurrence of cirrus clouds and their macrophysical/microphysical properties. At this time, we cannot reason-
ably conclude that variations in RHI for the different synoptic classifications are the primary driver of the
differences in cirrus cloud properties among the classifications, especially since the majority of the RHI results
do not exceed the computed measurement uncertainties.
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