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The retrieval of warm rain from CloudSat
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[1] An algorithm for the retrieval of warm rain over oceans for CloudSat that uses
ancillary information from the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument is presented. The method builds upon the architecture of the standard CloudSat
2C-RAIN-PROFILE product. Several general enhancements of that architecture have
been made, including the implementation of a fast two-stream multiple-scattering radar
model and a detailed error characterization. The algorithm has also been modified to
specifically target the retrieval of warm rain by using ancillary MODIS visible optical depth
observations to construct a parameterization of the cloud water path, implementing a model
of the evaporation of rain below cloud base, and introducing a realistic representation of
warm raindrop size distributions. With these important algorithm modifications, the
CloudSat 2C-RAIN-PROFILE product is ideally suited to examine the distribution and

magnitude of light rain over oceans.
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d0i:10.1029/2011JD016076.

1. Introduction

[2] The prevalence of warm rain over the oceans has been
well known for some time [e.g., Battan and Braham, 1956],
however much of this rain is modest in intensity and as a
result conventional satellite-based remote sensing methods
have little skill in identifying its occurrence let alone quan-
tifying its intensity. Through a comprehensive analysis of
shipboard weather reports, Petty [1995] showed that the
dominant modes of precipitation are drizzle and transient
showers in expansive areas of the subtropical oceans. He
points out that these modes of precipitation represent signif-
icant challenges to spaceborne precipitation methodologies
based on visible, infrared (IR), or passive microwave
observations. Historically, infrared [4rkin, 1979] or merged
visible-IR methods [Lovejoy and Austin, 1979] attempted to
quantify precipitation using simple brightness temperature
thresholds that were statistically tuned to produce a rea-
sonable precipitation climatology. The physical motivation
behind such an approach was that cold high clouds would be
associated with the heaviest rain. However, these methods
have little skill at identifying warm precipitation where the
infrared brightness temperatures fall above the precipitation
thresholds. More physically grounded rainfall algorithms
use passive microwave (PMW) observations that are directly
sensitive to the bulk emission from liquid water as well as the
scattering of high-frequency microwave radiation by lofted
ice [Wilheit, 1986]. However, in the case of warm precipi-
tation where an ice- scattering signal is absent, any PMW
method will suffer an inherent ambiguity in distinguishing
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nonprecipitating cloud from precipitation [Stephens and
Kummerow, 2007]. Even if rainfall could be identified
unambiguously, microwave algorithms still need to partition
the observed emission signal between cloud and rainwater,
which are often of the same order of magnitude for warm rain
[Lebsock et al., 2011] leading to a further ambiguity in
quantifying the rain intensity.

[3] The Tropical Rainfall Measurement Mission (TRMM)
precipitation radar (PR) makes the most direct observation
of precipitation from space and offers the current benchmark
in terms of global precipitation measurements. The radar
reflectivity observed by this sensor is insensitive to the pres-
ence of cloud water and therefore does not suffer the ambi-
guities associated with PMW techniques. However, the PR
has a minimum detectable signal of 17 dBZ, which limits its
ability to observe the light end of the rainfall intensity dis-
tribution. The PR may miss light rain composed of low
concentrations of small raindrops that produce weak reflec-
tivity signatures, echo top heights that are shallow enough
to be obscured by the radar surface return, or due to partial
beam filling of the 5 km PR footprint by isolated showers.
Schumacher and Houze [2000] estimate that the PR misses
2.3% of the rainfall accumulation near the Kwajelin Atoll due
to some combination of these factors, however there is good
reason to suspect that this rather optimistic regional result
may not be applicable to all oceanic regimes. For example,
Short and Nakamura [2000] develop a statistical model of the
PR echo top heights and radar reflectivity distributions that
suggests that the PR misses as much as 20% of the shallow
rain in the tropics and Berg et al. [2010] use collocated PR
and CloudSat observations to estimate that the PR misses
10% of the total rainfall accumulation in the tropical and
subtropical oceans. Furthermore, the most recent version of
the Goddard precipitation profiling algorithm [Kummerow
et al., 2011] uses a methodology that merges passive
microwave observations with PR observations in a manner
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that is physically consistent with both sensors to develop a
rainfall database. This new database increases rain rates by
4.2% over the PR solution and much of this difference results
from the addition of light rain that falls below the minimum
detectable signal of the PR.

[4] Because of the inherent difficulty of conventional
remote sensing methods to identify the occurrence and
quantify the intensity of warm rain there has been increased
interest in the use of the CloudSat millimeter wave Cloud
Profiling Radar (CPR) observations to observe warm rain.
For example, Lebsock et al. [2008] estimate that 6.5% of
warm clouds over oceans precipitate, Chen et al. [2011]
estimate that warm rain accounts for 31.2% of all rain
events, and Leon et al. [2008] use a simple reflectivity-rain
rate (Z-R) relationship to assign drizzle rates based on the
maximum reflectivity observed in warm clouds. Application
of a simple Z-R relationship to CloudSat data to estimate the
surface rain rate is complicated by two factors. First, because
of'the 94 GHz operating frequency of the CPR, attenuation by
both gasses and hydrometeors cause the observed reflectivity
(2) to appear smaller than the unattenuated single scatter
reflectivity (Z,,). This effect compounds along the radar path
reaching a maximum at the Earth’s surface. One would ide-
ally like to relate the observed reflectivity in the range gate
closest to the surface directly to the surface rain rate however
the presence of attenuation above this gate necessitates an
attenuation correction procedure. It is well known [Hitschfeld
and Bordan, 1954] that this approach can result in cata-
strophic errors for heavily attenuating frequencies like that of
the CPR. An additional inconvenience is the presence of
multiple-scattering effects that alias the scattering signal from
one range gate into range gates further from the radar system.
Both the attenuation correction and the multiple-scattering
signal thus build from the top down maximizing at the Earth’s
surface and complicate the relationship between the observed
near-surface reflectivity and rain rate. Attenuation decreases
the apparent reflectivity whereas multiple scattering increases
the apparent reflectivity with attenuation effects tending to
dominate. Even in light and moderate rain these effects must
be accounted for and can completely obscure the relation-
ships between the radar reflectivities and rain rate in heavy
rain [Battaglia et al., 2008]. Fortunately, attenuation and
multiple-scattering effects are minimized in shallow, light
precipitation, precisely the types of rain events where con-
ventional sensors struggle and CloudSat has the most to
contribute to the global rainfall climatology. An additional
and fundamental limitation of CloudSat as a precipitation
sensor is that it suffers from surface clutter contamination in
the first two radar bins above the surface over ocean and the
first three bins over land. As a result surface precipitation
must be inferred from the reflectivity in the lowest clutter-free
bin leading to unavoidable errors in estimating the amount
of precipitation that evaporates between this elevated layer
and the surface.

[5]1 L’Ecuyer and Stephens [2002] introduce an optimal
estimation (OE) framework to retrieve rain profiles using
CloudSat reflectivity profiles in conjunction with an integral
constraint on the path-integrated attenuation (PIA). The key
element of this work is a recasting of the “noise” in the
attenuation from precipitation water as a “signal” through the
use of an integral constraint on the solution. This approach
has a heritage in the PR retrieval algorithm [Iguchi et al.,
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2000], which also employs a PIA constraint on the derived
rain rates. Haynes et al. [2009] outline a method specific to
the CPR to derive the PIA that employs an empirical rela-
tionship between the clear sky surface backscattering cross
section and the 10 m wind speed and sea surface temperature.
They further develop a simple algorithm for using the PIA
to infer surface rain rate, which assumes that the rainfall is
vertically invariant. Matrosov [2007] uses an alternative
attenuation-based technique in which the vertical gradient of
reflectivity is used in conjunction with the assumption of a
vertically uniform rain column to deduce the attenuation and
relate this to surface rain rate. Both of these attenuation
techniques are useful for moderate to heavy precipitation,
however they have little applicability to the warm rain
problem where significant vertical variation exists in the
structure of rainfall and the attenuation signal is often smaller
than the noise inherent in the PIA observation. Mitrescu et al.
[2010] present a preliminary application of the OE framework
utilizing both the reflectivity profile and a PIA constraint in
introducing the operational CloudSat 2C-RAIN-PROFILE
product, however the algorithm assumptions made in that
work are not particularly well suited to the retrieval of warm
rain. In particular the attenuating effect of cloud water is not
modeled and the assumed precipitation drop size distribution
is not appropriate for warm rain. Additional and more general
deficiencies of early versions of 2C-RAIN-PROFILE include
the lack of a multiple-scattering model and simplistic error
characterization that neglects the error introduced through
physical assumptions.

[6] To address some of the known shortcomings of the
early versions of the 2C-RAIN-PROFILE product, this paper
presents a multisensor A-Train algorithm specific to oceanic
warm rainfall that builds upon the previously mentioned
studies. Following L’ Ecuyer and Stephens [2002] the method
uses both the full reflectivity profile and an integral attenua-
tion constraint. Elements of this paper that differentiate it
from previous research include (1) the use of visible optical
depth measurements to provide a constraint on the cloud
component of the water path (#,), (2) an improved error
characterization, (3) modeling of precipitation optical prop-
erties using drop size distributions (DSDs) appropriate for
warm rain, (4) inclusion of a model of subcloud evaporation,
and (5) the implementation of a physical model of multiple
scattering to correct both the reflectivity profile and the PIA.
The algorithm presented here is research oriented, however
the new elements of this work form the basis for ongoing
upgrades to the operational CloudSat rainfall products.

2. Data

[7] Data from release 04 of the standard CloudSat data
products and the Moderate Resolution Imaging Spectro-
radiometer (MODIS) MODO06 (version 5.1) cloud product
[Platnick et al., 2003] for the year 2007 were used in this
study.

[8] The first step in the data reduction was to identify
raining pixels, which were found using the rain flag in the
2C-PRECIP-COLUMN product [Haynes et al., 2009]. That
product has four categories describing the likelihood of sur-
face precipitation ranging from nonraining to rain certain.
Intermediate categories are associated with near-surface
reflectivities less than 0 dBZ that are most likely associated
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Figure 1. The joint histogram of the apparent PIA and the
near-surface reflectivity. No corrections for attenuation or
multiple scattering have been made.

with drizzle and light rain that does not reach the surface. For
this reason the results presented here are limited to cases that
are identified as rain certain. After identifying raining pixels,
warm rain was discriminated from ice phase rain using
the CPR Echo Top flag contained in the 2B-GEOPROF
product. The remaining raining pixels have cloud top pres-
sures greater than 500 hPa and cloud top temperatures
warmer than 273 K according to the European Centre for
Medium-Range Weather Forecasts (ECMWF)-AUX prod-
uct, which contains ECMWF analysis fields that are spatio-
temporally interpolated to the CloudSat radar bins.

[9] Once the warm raining pixels were identified, profiles
of radar reflectivity (Z), gaseous attenuation, and a hydrom-
eter mask are taken from the 2B-GEOPROF product
[Marchand et al., 2008]. The hydrometeor mask is composed
of a flag ranging in value from 0 through 40 with increasing
values corresponding to increasing likelihood of cloud. A
conservative threshold of 30, which has a false detection goal
of 2% [Marchand et al., 2008], was used to discriminate
cloudy from clear bins since the focus is on precipitation and
not tenuous cloud layers. The ECMWF-AUX product pro-
vides corresponding profiles of temperature, pressure and
humidity that are linearly interpolated in time and space to the
CPR radar volume. In addition to the reflectivity profiles, two
integral constraints were employed in the retrieval algorithm.
The first is an estimate of the PIA, which was taken from 2C-
PRECIP-COLUMN. The second is an observation of the
visible optical depth (7) from MODIS, which provides an
independent integral constraint on the cloud water path (W().

3. Algorithm Description

3.1.

[10] The intent of this paper is to outline a methodology for
deriving profiles of precipitation water content (/,) while
simultaneously constraining the cloud water path in an effort
to estimate the surface rainfall (R) using observations from
CloudSat and MODIS. Specifically, a given radar profile with
N cloudy bins has N + 2 observations, including a vector of
reflectivities Z=[Z,,... Zy], the PIA and log; (7). From these
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observations, a “state” vector, x = logo[/},...,/n, Wc], com-
posed of N + 1 parameters will be retrieved. To improve the
linearity in the radiative model that maps the state parameters
into the observations the logarithmic transform is used while
the conventional decibel units are used for Z and PIA. The
desired goal of estimating the surface rain rate is achieved by
assuming a relationship between the precipitation liquid
water content in the lowest resolvable radar bin (/y) and the
surface rain rate.

[11] The physical basis for such an approach is that the
radar reflectivities are primarily a function of the precipitation
water content, whereas the optical depth is most sensitive to
the cloud water path, and the PIA is a function of both cloud
and precipitation water. The two integral constraints (PIA, 7)
thus act to constrain both the total water path and partition
water between the cloud and precipitation modes while the
vertical distribution of precipitation water is determined by
the reflectivity profile. The independent optical depth con-
straint on the cloud water path is helpful when observing light
precipitation with the CPR because the radar reflectivities are
insensitive to the cloud water in the presence of rain however
cloud water can have measurable effect on the attenuation of
the radar beam.

[12] A key element of this work centers on designing a
retrieval of R that transitions from a reflectivity-based
retrieval for light rain when the attenuation is small to an
attenuation-based retrieval at high rain rates when the atten-
uation is large. In this work, use of the subjective term high
rain rates is tied to this transition from reflectivity to attenu-
ation and is roughly given by 2—3 mm h™'. The need for such
a transition in the retrieval framework is highlighted in
Figure 1, which shows a joint histogram of the PIA and the
near-surface reflectivity observations for the retrievals pre-
sented in this paper. A nonmonotonic relationship is observed
between the PIA and the near-surface reflectivity with
reflectivity initially increasing with PIA and then decreasing
as PIA becomes large. It is extremely difficult to assign
rainfall intensity estimates to these heavily attenuated
reflectivities due to the propagation of errors discussed by
Hitschfeld and Bordan [1954], thus highlighting the impor-
tance of PIA as a signal that can be exploited in heavy rain.

3.2. Radiative Model

[13] Simulated radar reflectivites (Z;,,) and path-integrated
attenuation (PIA;,,) are calculated from Mie scattering theory
using the general expressions,

Zsim = Zss + Upg — Lt

7 (1)
PIAgim = PIAg — D
where I, represents a multiple-scattering correction and I,
represents an attenuation correction both of which are defined
to be greater than 0. Attenuation effects tend to dominate the
correction to the single-scattering reflectivity with attenua-
tion by water vapor regularly exceeding 6 dB in the tropics
and attenuation in heavy precipitation exceeding 100 dB.
Multiple-scattering effects are generally small in warm rain
but they are often not negligible in shallow cumulus showers
when rain rates become moderate in intensity. It is critical to
account for these effects because in many regions much of
the total accumulation from warm rain derives from these
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moderate to heavy rain events. In this work multiple scat-
tering is modeled using the fast time-dependent two-stream
(TDTS) method of Hogan and Battaglia [2008]. The TDTS
model has been shown to compare favorably with benchmark
Monte Carlo simulations while being significantly more
computationally efficient. Furthermore, any inverse applica-
tion of a multiple-scattering model will be far more sensitive
to the necessary assumption of a precipitation DSD than
to the precision of the model itself, which discourages the
use of a more complex model. Here, the TDTS model is
used to correct both the reflectivities and the observed PIA
for multiple-scattering effects. Multiple scattering always
increases the apparent reflectivity therefore these corrections
always reduce the single-scattering reflectivity values while
increasing the PIA estimate.

[14] The visible optical depth is approximated from both
the cloud and precipitation water contents,

H

30ex I /
T = 20 / (— - i) dz, )
4pl Vec Fep
0

z=l

where p;, is the density of water, the integral is calculated from
the ocean surface to cloud top (#), and it has been approxi-
mated that the extinction efficiency (Q..,) = 2 [Stephens,
1978]. Uncertainty introduced by this approximation is
small relative to the uncertainty in the observed optical depth,
which for precipitating clouds is at least 20% based on
instrument noise [Nakajima and King, 1990] and the
assumption of , .. Because of the inverse relationship with r.,
cloud water dominates the optical depth, however the pre-
cipitation mode water plays a nonnegligible role when the
precipitation is composed of relatively small drizzle drops.
Depending on the details of the DSD, the influence of pre-
cipitation mode water on the visible optical depth may be as
large as 5-10% [Lebsock et al., 2011].

3.3. Retrieval Framework

[15] The retrieval framework follows the OE methodology
that has been described in detail elsewhere [L’Ecuyer and
Stephens, 2002] but a brief review is provided here for
completeness. The retrieval seeks to minimize the cost
function,

¢ = [Zsim - Z]T Sz[Zsim - Z} + [X — Xa]T Sa [X - xa}

+ (PIASim - PIA)2 (Txim - 7-)2

o 2
Opia o

3)

where X, represents an a priori estimate of the state (x), Z
represents a vector containing the reflectivity profile, PIA
represents the path-integrated attenuation, 7 represents the
visible optical depth, the subscript sim denotes a simulated
quantity, S, is the observation error covariance matrix, S, is
the a priori error covariance matrix, and o° represents the
estimated error variance in PIA and 7. The error variances and
covariances determine the relative influence of the four terms
in determining the retrieved state. The cost function is mini-
mized in a straightforward manner using Newtonian iteration
until a solution is achieved that provides an optimal match to
both the observations and a priori constraints given their
relative error bounds. The value of the cost function (®) at
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convergence represents a measure of the goodness of fit
between the physical model and the observations and should
approximately follow a x* distribution with N + 2 degrees of
freedom. It is useful to define a maximum allowable \*
threshold value above which retrievals are flagged as suspect.

[16] With the assumption of Gaussian statistics some useful
error diagnostics may be defined from equation (3) including
a retrieval error covariance matrix,

L'L. M™
Sx =[S, KIS K+ —— +——|, (4)
OpIA o7

where K = 0Z,,/0x, L = 0PIA,,/0x, and M = 07, /0X
are kernel weighting functions representing the sensitivity of
the simulated observation to the retrieval parameters. The
diagonal elements of Sy are the retrieval error variances
corresponding to each of the retrieved parameters in x. Fol-
lowing L’ Ecuyer and Stephens [2002], the total retrieval error
covariance matrix may be broken down into contribution
matrices,

Sx =Cz + Cy + C; + Cpa, (5)

where the matrices on the right-hand side correspond to the
component of retrieval error deriving from the reflectivity
profile the a priori constraint, the visible optical depth con-
straint, and the PIA constraint, respectively. The ratio of any
diagonal element of a contribution matrix (C) to the corre-
sponding element of the retrieval error covariance matrix (Sy)
provides a measure of the fractional contribution of that
constraint to the derived solution for that particular element
of x. For example, to determine the fractional contribution of
the PIA constraint to the derived near-surface rain rate given
in element x, of the state vector one would calculate Cpya_yn/
Sx.nnv which would vary between 0 when the PIA does not
contribute and 1 when the PIA fully determines the answer.

3.4. Microphysical Algorithm Assumptions

[17] The problem of estimating the rain rate from the
observations is incompletely defined as posed and requires a
number of simplifying assumptions. These assumptions take
the form of simple physical models that are imposed upon the
problem to make the necessary radiative calculations possi-
ble. These models include (1) a model to distribute cloud
water in the vertical and determine the cloud DSD, (2) a
model of evaporation of rain below cloud base, and (3) a
model of the precipitation DSD. Descriptions of these models
are described in section 3.4.1.

3.4.1. Cloud Model

[18] A linearly stratified cloud model is assumed in which
cloud water content increases linearly with height from cloud
base to cloud top and cloud effective radius (r,) increases to
the one-third power above cloud base [Bennartz, 2007]. A
cloud top effective radius of 15 ym is assumed. MODIS
effective radii could also be used to assign the cloud top
radius, however these products are not used in this work due
to difficulties in their interpretation due to penetration depth
[Platnick, 2000] and three-dimensional radiative [Marshak
et al., 2006] effects. Cloud water is distributed from the
first cloudy bin at the top of the profile to the lowest resolv-
able bin, which varies by 120 m around a height of ~720 m.
An assumption regarding the height of cloud base is neces-
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Table 1. The Parameters of the Warm Rain Reflectivity-Rain
Rate (Z-R) Relationships of the Form Z = aRr"™

Cloud Type a b @ 15
Nimbostratus 25.0 1.3 1.751 0.223
Congestus 88.0 1.5 2.179 0.335

27 is in mm®m? and R is in mm/h. These relationships are used to derive a
parameterization of the DSD of the form, At alﬁ, where A is the slope
parameter of the truncated exponential size distribution in ym ™' and 1, is
the precipitation liquid water content in g/m®.

sary because no observation of cloud base is possible in rain.
Another possible choice for cloud base could be the lifting
condensation level calculated from the ECMWEF model
analysis fields, which is on average approximately 200 m
lower than the lowest resolvable radar bin. Retrieval results
are not particularly sensitive to this assumption because the
cloud water content is small at cloud base. The linearly
stratified cloud model with the stated assumptions fully
describes both the microphysical (DSD) and the vertical
distribution of cloud water.
3.4.2. Evaporation Model

[19] Rainwater is distributed from the first cloudy bin at the
top of the profile to the ocean surface. The vertical distribu-
tion of this water is to be determined by the measurements.
A simple model derived for nimbostratus is used to model
evaporation below cloud base [Comstock et al., 2004],

R(z) = Rege (%)

5
?12,-5

where R(z) is the rain rate at some height (z) below cloud
base, R¢p is the cloud base rain rate, 7, is the mean radius of
the precipitation drop size distribution, and & = 320 [pm’ "
m ']. While this model is somewhat simplistic it has the
desired effect of significantly evaporating light drizzle falling
from cloud base to the surface while having a modest effect
on moderate to heavy rain because of the strong dependence
on the mean radius of the size distribution.
3.4.3. Raindrop Size Distributions

[20] By far the most troubling assumption that must be
made in any radar rainfall algorithm is that of the rain DSD.
Because the focus of the this work is on light precipitation in
which the precipitation drops are often only a few times larger
than the cloud droplets a truncated exponential distribution is

used to model the DSD,
{ (r B r() )}
eXp|—\=—7"" s
rp —To

where N, is the precipitation number concentration and 7,
is the truncation radius, which is assigned a value of 25 pum.
The moments of the truncated exponential distribution are
given by,

(6)

N,
n(r) =—+
rp_ru

™)

M; = / Fu(r)dr=N

r=r,

i< (ru)\)i
PN

=

(®)
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This expression provides the effective radius as r, = M3/M,
and the precipitation liquid water content as [, = (4/3)mwpMs.
The DSD may be simplified by setting A= 1/(7, — r,)and N,, =
N, to give n(r) = N, exp[ =\ — r,)] where N, and ) are
known as the intercept and slope parameters, respectively. In
the well-known formulation of Marshall and Palmer [1948],
r, 1s implicitly set to 0 and N, is set to a constant value so that
variations in the drop number concentration are perfectly
correlated to variations in the mean radius of the distribution.

[21] Previous versions of the 2C-RAIN-PROFILE algo-
rithm have adopted a universal Marshall-Palmer size distri-
bution that is generally inappropriate for warm rain. For
example, Comstock et al. [2004] show that for drizzling
stratocumulus, variation in the precipitation rate is best
explained through variations in the droplet number concen-
tration and that the assumption of a constant intercept
parameter is not appropriate. In the present work two differ-
ent Z-R relationships are chosen represent the warm rain
DSDs. The first is applicable to nimbostratus [Comstock
et al., 2004] and the second is applicable to cumulus con-
gestus [Snodgrass et al., 2009].

[22] The Z-R expressions relate radar reflectivity to rain
rate, however they do not provide the other optical properties,
in particular the volume extinction coefficient that is neces-
sary to simulate a profile of radar reflectivities. To this end, a
method to parameterize the DSD from any Z-R relationship is
developed. First values of N, and 7, are derived that match the
Z-R relationship along the range of reflectivities varying from
—20 to 10 dBZ where the fall velocity observations of Gunn
and Kinzer [1949] are used to relate the size distribution to
a specific rain rate. From the derived values of N, and 7, a
parameterization of the DSD is found by fitting a relationship
between the slope parameter and the liquid water content
of the form In(A\ ') = In(a) + BIn(l,) using ordinary linear
regression. This relationship can be more compactly
expressed as A ' = alff and completely defines the DSD
parameterization subject to the previously mentioned size
distribution truncation given by 7,. For example, N, may be
found by invoking the definition of the liquid water content
and the expression for the moments of the DSD provided
above. Once N, and A have been determined any radiative
property at any frequency may be calculated. Table 1 pro-
vides the coefficients of the Z-R relationships and of the DSD
parameterizations for both the drizzle and cumulus DSDs.

[23] Figure 2 shows physical and optical parameters of the
drizzle, cumulus, and Marshall-Palmer DSDs. The most
important difference seen in Figure 2 is that for a given rain
rate the drizzle DSD contains substantially more water and
has much higher number concentrations than the cumulus or
the Marshall-Palmer distribution. It follows that the drizzle
DSD is associated with smaller reflectivities and larger
attenuation than the cumulus and Marshall-Palmer DSDs
because reflectivity is a strong function of drop size whereas
attenuation is a strong function of water mass.

[24] To determine which DSD to assume for any given
pixel a cloud top height threshold of 2 km is chosen to tran-
sition from the drizzle to the cumulus DSD. Figure 3 shows
the geographical distribution of the fraction of warm raining
clouds that have observable radar echo tops higher than 2 km
according to the GEOPROF product. Warm rain with echo
tops below 2 km is most frequent in the subtropical subsi-
dence regions and the midlatitudes whereas deeper warm rain
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Figure 2. Some key microphysical and optical par
the paper.

clouds occupy the large majority of the tropical oceans, thus
providing some qualitative justification for the 2 km thresh-
old. This threshold is admittedly ad hoc, however it does have
the desired effect of providing regional variation in the
assumed drop size distribution that imposes regional varia-
tion in the retrieved rain rates.

3.5. Error Covariance Matrices

[25] The true utility of the OE retrieval framework lies in
careful error characterization, the details of which are buried
in the process of defining the elements of the S, and S, error
covariance matrices. To begin the discussion of the error
covariance, it is noted that the diagonal elements of these
matrices represent variances such that S; = o7, whereas the
off-diagonal elements represent covariances such that S; =
p;0:i0;, where p;; is the correlation between the uncertainties.
Our previous applications of the OE framework to the
CloudSat precipitation retrieval problem have considered S,
and S, to be diagonal matrices with constant variance values
that did not change during the retrieval iteration or even from
one pixel to the next. In reality, errors are often correlated and
the values that compose the S, and S, matrices should vary
with the estimated state (x). To this end, a detailed outline for
amore complete characterization of the error characterization
follows beginning with the a priori error covariance (S,) and
followed by the measurement error covariance (S,).

[26] Because rain and cloud water contents vary by orders
of magnitude on scales less than the sampling volume of the
radar, there can be no real a priori knowledge of the magni-
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ameters of the drop size distributions examined in

tude of the state prior to observation. Nonetheless the inclu-
sion of the a priori term does allow for certain physical
constraints to be imposed on the retrieved state. For example,
it is known a priori that because rain falls through the atmo-
spheric column that the precipitation at one height level will
be correlated with the precipitation at adjacent levels.
Therefore in this work the a priori term is used not to constrain
the magnitude but rather to impose these correlations, thus
acting as a smoothing constraint on the minimization. First,
the diagonal elements of S, are set to very large values (o, ;
covers = 3 orders of magnitude) covering the entire range of
possible rainwater contents. Second, the magnitude of the

0.0

Figure 3. Fraction of warm rain (7 > 273 K) clouds with
cloud tops below 2 km. This is the height threshold chosen
to transition from a drizzle drop size distribution to a cumulus
drop size distribution.
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Figure 4. (a) A sample reflectivity profile with gray shading indicating the estimated observational uncer-
tainty (1/Sz;). Also shown are the associated (b) S, and (c) S, error covariance matrices.

correlations between radar bins is set through the use of a
correlation length scale (L) that allows the correlation to fall
off as the distance between radar bins increases,

—lzi — zj|
= 1. 9
oy exp( x (9)

The length scale should increase with the magnitude of
the rain rate, which to first order can be estimated by the
PIA [Haynes et al., 2009]. To accomplish this effect a
simple formulation is used here to define the length scale as
L=Az(1+PIA?), where Az is the thickness of the radar range
bins and PIA is expressed in dB. A minimum allowable value
of Az is imposed on the correlation length scale thus avoiding
the problem of nonphysical negative length scales. This use
of S, as a smoothing constraint minimizes the possibility of
the retrieved state containing unphysical oscillations in the
vertical profile of rain when the rain becomes moderate to
heavy in intensity. The precise formulation of the correlation
length scale can be used as a tuning function to provide sta-
bility to the minimization while strengthening the integral
constraint.

[27] The S, measurement error covariance matrix is a
function of both the measurement uncertainties (0,,045),
which are well characterized and the radiative transfer and
physical model assumptions (o,,,s) Which are much more
difficult to quantify. In practice the uncertainty due to the
model assumptions are larger and much more difficult to
characterize than those associated with measurement uncer-
tainty. The model assumptions that are critical in defining
O moa are those which affect the Z-R relationship (o) and those
that affect the vertical distribution of attenuation (o). The
04 term describes the effect of a propagation of errors
incurred in bins at the top of the profile to bins further from
the radar as was described by Hitschfeld and Bordan [1954].
For example, the attenuation of the beam before reaching
the first cloudy bin is negligible, however the attenuation-
corrected reflectivity in bin 2 is a function of the assumptions
made regarding bin 1 and so on along the radar path.

[28] Following from the above discussion, the diagonal
elements of S, are defined as S, ;; = 02oas T 02 + 02, The
measurement uncertainty is well characterized and assigned
the constant value of 1 dBZ [Tanelli et al., 2008], which
corresponds to a rain rate uncertainty that varies between 20%

and 35% on the range 0.01 to 1 mm h™'. The dominant
assumption that determines forward model errors is that of the
DSD and this uncertainty is estimated by taking the difference
between the nimbostratus and cumulus congestus size dis-
tributions as the range of natural variability in the DSD. These
quantities are assigned constant values of 0, =2 dB and 0, =
20% based the relationships shown in Figure 2. The o, term
has a constant value throughout the profile whereas the o,
term is assigned a value of 20% of the total attenuation that is
modeled between each bin and the radar. The o, term thus
has the desired effect of increasing with depth into the profile,
which tends to deweight reflectivities closer to the surface
relative to reflectivity at cloud top. More complicated meth-
ods could be constructed to more precisely estimate the for-
ward model uncertainties however it is our judgment that any
additional level of complexity would be unjustified by our
extremely limited a priori knowledge of the natural variability
in the DSD.

[20] Off-diagonal elements of the S, matrix are assigned
using the formulation S, ;; = ol + min(aﬁ,,,[,-, af,,,’l-,»). These
elements represent the shared error variance between radar
bins. Note that this value is always less than /S;;S,;
guarantying a physically plausible correlation less than unity.
Thus reflectivity error is assumed to be perfectly correlated
throughout the profile, whereas only the component of o,
that is located physically above both radar bins is included in
the off-diagonal elements. This formulation also assumes that
O meas 18 Uncorrelated between bins, which is approximately
true although the oversampling of the CloudSat radar data
introduces some correlations between adjacent 240 m bins.

[30] Uncertainty in the PIA is derived as a function of wind
speed and sea surface temperature in the 2C-PRECIP-
COLUMN product. Typically this value is on the order of 1 or
2 dB, however in extremely light wind situations it may be
significantly larger. The total error in PIA also includes a term
owing to errors in simulating it from the cloud and rainwater
paths. Therefore, the total error variance in the PIA obser-
vation iS oA = 02y T Oleas Where o, is assigned as
described above. Finally, uncertainty in 7 is taken directly
from the MODO06 product with a minimum allowable value
of 25%.

[31] The details of the error characterization are important
in two regards. First, the retrieval uncertainty that is derived
from the OE method is a strong function of both S, and S,
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Figure 5. An example of (a) a light rain retrieval and (b) a heavy rain retrieval. (top) The observed and
modeled reflectivity profiles as well as the modeled profile corrected for attenuation and multiple scattering.
Not all lines are visible in Figure 5a (top) because they lie on top of each other. (bottom) The retrieved pre-
cipitation liquid water content (/,) and associated 1o uncertainty estimate (gray shading). The observed PIA,
surface rain rate (R), and PIA contribution to the solution are shown.

necessitating realistic observation errors that account for both
the relatively small measurement error and the much larger
model assumption errors. Second, accounting for a state-
dependent error estimate permits the same retrieval frame-
work to seamlessly transition from a solution that is driven
primarily by the reflectivity measurements to one that is
driven primarily by the PIA. This seamless transition is made
possible through the inclusion of correlations in S, and S, and
the increasing value of o, with depth, which act to reduce the
effective number of degrees of freedom of the reflectivity
observations to some value less than N. Figure 4 shows a
graphical depiction of the S, and S, matrices for a lightly
precipitating cloud. This example illustrates that even in this
relatively weakly attenuating case, strong correlations are
imposed in S, imposing a smoothing on the derived solution.
The effect of increasing error variance with depth in S, is
also clearly evident illustrating another influence of the error
characterization on the transition from a reflectivity-based
to an attenuation-based solution.

4. Results and Discussion

4.1. Algorithm Mechanics

[32] The premise of the retrieval algorithm is that it grad-
ually transitions from a reflectivity-driven solution to an
attenuation-driven solution as the rain rate increases. Figure 5
shows two specific example retrievals to contrast the retrieval
behavior in a light rain and a heavy rain event. In the light rain
event the PIA is small and it is evident that the derived pro-
files of precipitation water content are being driven by the
reflectivity profile because the derived reflectivity profiles
match the observed profiles nearly exactly. In contrast, the
attenuation is extreme in the heavy rain event and the retrieval
is strongly influenced by the attenuation and smoothing

constraints. While the retrieval matches the observed PIA
well, the derived reflectivity profile shows significant devi-
ation from the observed profile and the magnitude of this
deviation increases with depth as was intended by the
uncertainty characterization described in section 3.5. This
case also clearly demonstrates the importance of multiple
scattering in heavy precipitation where the modeled multiple-
scattering correction to the observed reflectivities approaches
5 dBZ near the surface. To demonstrate that the behavior
shown in Figure 5 is typical of the data set as a whole, a
statistical comparison of the observed near-surface reflec-
tivity and PIA with the retrieved rain rates is shown in

Mean Rain Rate
20 10°

10

[mm/hr]

-10

Reflectivity [dBZ]

-20 n

-30 10
-10 0 10 20 30 40 50
PIA [dB]

Figure 6. The relationship between the mean retrieved rain
rate and the observed PIA and near-surface reflectivity. The
observations are not corrected for attenuation or multiple
scattering.
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Figure 7. (a) The probability distribution function (PDF) of
retrieved rain rates and (b) the mean fractional contribution of
the attenuation constraint and the a priori smoothing con-
straint. The error bars show the standard deviation.

Figure 6, which reiterates that the derived rain rate is pri-
marily a function of the reflectivity when the attenuation is
low and transitions to an attenuation solution within the range
of 0.1-0.5 mm h ™",

[33] We turn now to a discussion of the distribution of
the retrieved rain rates in shown in Figure 7a. The dynamic
range of the rain rates exceeds four orders of magnitude from
0.001 mmh " to 30 mm h™' with amean of 1.18 mmh™". The
results illustrate that light rain <I mm h™" account for 69.6%
of the warm rain occurrence and 15.3% of the warm rain
accumulation highlighting the importance of CloudSat as a
complementary precipitation sensor to the TRMM PR. The
bimodality of the distribution of rain rates in Figure 7a also
requires some discussion. The bimodal peaks are indicative of
the retrieval transitioning from a reflectivity mode to an
attenuation mode as intended. The extent to which the tran-
sition from a reflectivity-driven to an attenuation-driven
solution occurs can be quantified using the contribution
matrices described in section 3.3. The PIA is used as a con-
straint both through the explicit constraint term and through
the a priori smoothing term in equation (3), therefore the total
contribution of PIA to the derived solution is taken as the sum
of the PIA and the a priori contributions in equation (5). The
effect of these two constraints is quantified in Figure 7b,
which demonstrates that the total PIA contribution to the
solution increases monotonically with rain rate with the most
rapid transition occurring between 0.1 and 0.5 mm h™'.
Figure 7b further highlights that both the explicit PIA con-
straint and the a priori smoothing constraint contribute
appreciably to the derived solution.

[34] While a rain rate bimodality may exist in nature, nei-
ther the reflectivities nor the PIA observations demonstrate
two modes (see Figure 1), therefore the presence of this
incongruity between the reflectivity and attenuation solutions
suggests a potential bias in either the algorithm assumptions
or the observations. The most likely algorithm assumption
that could create this bias is that of the precipitation DSD, and
the most likely observation that could create this bias is the
PIA because the estimation of PIA requires imprecise and
potentially biased ancillary knowledge of the 10 m wind
speed and column integrated water vapor [Lebsock et al.,

WARM RAIN RETRIEVAL D20209

2011]. If biases in the PIA could be mitigated, the incon-
gruous bimodal character of the distribution suggests the
possibility that a column-integrated parameter of the drop
size distribution (i.e., the intercept parameter, N,) could be
retrieved.

[35] A characterization of the retrieval uncertainty cal-
culated from the S, error covariance matrix defined in
equation (4) is provided in Figure 8 in which two distinct
regimes are evident. For light rain rates where results are
driven by the reflectivity profile, the retrieval uncertainty
is on the order of 150%. As the rain rates exceed 0.5 mm h™'
and transition to an attenuation-based solution, the frac-
tional uncertainty begins to decrease monotonically toward
an asymptotic value near 40%. It must be noted that this
uncertainty characterization does not include an estimate
of multiple-scattering uncertainty, which should tend to
increase with PIA and offset the monotonic decrease of
uncertainty in the attenuation-driven regime.

4.2. Multiple Scattering

[36] Even in the warm rain examined here multiple-
scattering effects on the CPR reflectivities are not negligible.
Figure 9 demonstrates that while multiple-scattering effects
exceeding a few dBZ are relatively rare, these cases account
for a disproportionately large fraction of the total rain accu-
mulation. For example only 8.6% of warm rain has a surface
multiple-scattering signal that exceeds 2 dBZ, however these
cases account for 50.7% of the warm rain accumulation.
To test the sensitivity of the retrieval to multiple-scattering
effects the retrieval was rerun with the multiple-scattering
correction turned off which will have the effect of decreasing
Zim profiles and increasing PIA;,,. Figure 10 shows that the
resultant effect is to decrease the heavy rain rates, due to the
dominance of the PIA constraint in heavy rain. This causes
an underestimation of the mean rain rate of —24.4%. The
multiple-scattering correction is very sensitive to the assumed
DSD because of the manner in which the attenuation and

250 A L D D |

150

100

Uncertainty [

o)
o

10® 102 10" 10° 10
Rain Rate [mm/hr]

Figure 8. The median 1o uncertainty estimate in the surface
rain rate. The error bars cover a range that spans 75% of the
data.
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Figure 9. The cumulative distribution function (CDF) of the
multiple-scattering correction at the surface (black). The
weighted CDF (gray) is weighted by rain rate and is therefore
representative of the total rainfall accumulation.

scattering phase function vary with DSD. In particular, DSDs
composed of large drops tend to have more forward scattering
than DSDs composed of small drops, which tend to scatter
more isotropically. Figure 11 shows that when the warm rain
DSD is replaced with a Marshall-Palmer distribution the
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Figure 10. A comparison of the standard retrieval and a
test in which multiple scattering is not modeled. The black
line shows the mean, and the error bars show the standard
deviation.
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Figure 11. The difference between the surface multiple-
scattering correction from a test in which a Marshall-Palmer
size distribution is assumed and the standard retrieval. Note
that the difference equals Marshall-Palmer minus standard,
so that the multiple scattering of the Marshall-Palmer DSD
is seen to overestimate that of the warm rain DSD.

multiple-scattering signal increases by up to 100%. There-
fore errors in the multiple scattering are dominated by
DSD assumptions and increasing the accuracy of the radar
model by incorporating a more complex and computationally
demanding multiple-scattering model than the TDTS model
is not justified. Furthermore, while the error characterization
shown in Figure 8 does not account for multiple-scattering
contributions to retrieval error, due to the sensitivity of
the multiple scattering to the DSD, rainfall retrievals with
multiple-scattering corrections exceeding ~5 dB warrant an
additional degree of scrutiny. 2.6% of the warm rain retrievals
considered here exceed this threshold. In the 2C-RAIN-
PROFILE product these pixels will be flagged as question-
able in a retrieval confidence flag included in the product file.

4.3. Drop Size Distribution

[37] The Marshall-Palmer DSD used in previous imple-
mentations of this algorithm is simply inappropriate for warm
rain events. Figure 12 highlights the impact of assuming
a Marshall-Palmer DSD on the retrieved rain rates. The
Marshall-Palmer DSD tends to underestimate rain rates in
the reflectivity regime and overestimate rain rates in the
attenuation regime. This result is quite consistent with the
optical properties provided in Figure 2, which show that for a
given rain rate, the warm rain DSDs have more water and
larger number concentrations than the Marshall-Palmer DSD
resulting in smaller reflectivities and larger attenuations.
Although there are compensating errors at the light and heavy
end of the spectrum, mean rain rates overestimated by a factor
of two when a Marshall-Palmer DSD is assumed because
the total accumulation is weighted strongly toward the heavy
rain events.
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4.4. Evaporation

[38] A novel element of this retrieval is the modeling of
evaporation of light rain and drizzle below cloud base. To
quantify the effect of the evaporation parameterization on the
derived rain rates, the algorithm was tested with the evapo-
ration model disabled. Results are presented in Figure 13,
which demonstrates that the evaporation model tends to

10'F 3
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107'E E

10%F

No Evaporation Test [mm/hr]

]_O_:i - Lol Lol Lol Lol L
10°° 107® 10™ 10° 10
Standard Retrieval [mm/hr]

Figure 13. A comparison of the standard retrieval against a
test in which the subcloud evaporation is disabled. The solid
black line shows the mean, and the error bars show the stan-
dard deviations.
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Figure 14. The modeled rain visible optical depth (7,;,) as
a function of the total modeled optical depth (T joug T Train)-
The error bars cover a range that spans 75% of the data.

reduce the rain rate in weakly precipitating clouds with
little noticeable change above 1 mm h'. The difference in
the mean rain rate is only 13.2%, however this difference
is likely to be significantly more pronounced on regional
scales in regimes that are dominated by weakly precipitating
stratocumulus.

4.5. Cloud Water

[39] MODIS observations of the visible optical depth were
included in this retrieval in an effort to constrain the cloud
water path, which has a negligible effect on the reflectivities
but can account for an appreciable fraction of the attenuation
in light rain. Instead of simply assigning a MODIS water path
for each retrieval, W, was included as a retrieval parameter to
account for the effect of precipitation water on the observed
visible optical depth. Figure 14 demonstrates that the effect of
precipitation water on the optical depth is roughly on the
order of 10%, implying a 10% difference in the cloud com-
ponent of the attenuation from that which would be assigned
by assuming that the optical depth is purely a function of
cloud water.

[40] The visible optical depth observation is only available
during daylight hours, therefore the cloud water path must
be assumed at night. This is particularly relevant for the
2C-RAIN-PROFILE product that to date has neglected the
presence of cloud water. To this end, a simple least squares
approach is used to develop a parameterization of the cloud
water path given the cloud height and surface rain rate,

log,o(W .) =2.147 4+ 0.011H + 0.132log,((R) : Nimbostratus
log;o(W ) =2.186 + 0.017H + 0.12910g,,(R) :  Congestus
(10)
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Figure 15. A comparison of the standard retrieval against a
test in cloud water is parameterized using equation (10). The
solid black line shows the mean, and the error bars show the
standard deviations.

with W, expressed in gm 2, H in km and R in mm h™'. We
note that a tremendous amount of natural variability exists in
the cloud water path and therefore the parameterized W,
correlates relatively poorly with the observed W, (p = 0.39).
Nonetheless this parameterization captures some gross fea-
tures of the cloud water path that provides a basis for
ascribing cloud water when ancillary visible optical depth
observations are unavailable. Figure 15 shows a comparison
of the standard retrieval with one in which the visible optical
depth constraint in equation (3) is removed and cloud water is
assigned using equation (10). The difference in the mean rain
rates is less than 1% with the largest differences not exceeding
5% occurring at light rain rates. These errors are clearly small
relative to the more critical assumptions, especially that of the
rain DSD justifying the use of equation (10) in the operational
2C-RAIN-PROFILE CloudSat algorithm.

4.6. Comparison to the 2C-PRECIP-COLUMN
Product

[41] The attenuation-based 2C-PRECIP-COLUMN [Haynes
et al., 2009] rainfall product has existed prior to the develop-
ment of this algorithm and is beginning to be used by the sci-
entific community [e.g., Berg et al., 2010; Stephens et al., 2010]
for quantitative purposes. Therefore, it is of some interest to
compare the rain rates presented here with the 2C-PRECIP-
COLUMN results. 2C-PRECIP-COLUMN has some similari-
ties with the current retrieval, for example the effects of multiple
scattering on the PIA have been accounted for and a parame-
terization of the water path derived using MODIS data has been
included in the algorithm, however notable differences exist
including the assumption of a Marshall-Palmer DSD and the
assumption that the rain column is vertically uniform. Of par-
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ticular importance, the assumption of a vertically invariant rain
column causes 2C-PRECIP-COLUMN to be a better indicator
of the integrated rainwater path than the surface rain rate. These
algorithm assumptions are tailored toward tropical stratiform
precipitation and are not well suited to warm rain, however the
manner in which they will affect the retrieval is not immediately
evident.

[42] Figure 16 shows that the 2C-PRECIP-COLUMN
product tends to underestimate heavy precipitation and
overestimate light precipitation with respect to the current
work. These differences are opposite those that one would
expect from the assumption of a Marshall-Palmer DSD (e.g.,
Figure 12). Instead the differences are largely attributable to
the assumption of a vertically invariant rain column. For
example, 2C-PRECIP-COLUMN does not account for the
evaporation process, which results in a systematic vertical
distribution in the rainwater mass that causes that product
to overestimate light rain rates. Evaporation is negligible in
heavy rain, but in these cases rainwater content tends to
increase with depth into the cloud and maximize near cloud
base causing the 2C-PRECIP-COLUMN to systematically
overestimate the depth of the rain column and thus under-
estimate the surface rain rate. Partly due to a fortuitous
cancellation of errors at the low and high rain rates, the
2C-PRECIP-COLUMN is only 52% lower than the retrieval
presented here.

[43] Based on the results of this work, future releases of the
2C-PRECIP-COLUMN will attempt to address the system-
atic overestimation of the depth of the rain column. However,
given the notable differences between the two algorithms we
recommend caution in the interpretation of the 2C-PRECIP-
COLUMN rain rates when applied to warm rain events. We
emphasize that the 2C-PRECIP-COLUMN product is pri-
marily intended as a flagging product that should be used
to identify the occurrence of rain whereas the algorithm
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Figure 16. The joint histogram of the estimated surface
rain rate from the current retrieval and the 2C-PRECIP-
COLUMN (R04) product.
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presented here, which forms the basis of the 2C-RAIN-
PROFILE product, is favored for quantitative purposes.

5. Conclusions

[44] Early results from CloudSat demonstrate the ubiquity
of warm rain over the oceans that is not captured by other
satellite sensors. To date, efforts to quantify this rain have
been hindered by rainfall retrieval algorithms that are not
specifically tailored to warm rain. To address this short-
coming we have presented an algorithm for the retrieval of
warm rain from CloudSat and MODIS observations that
builds upon the work of L’Ecuyer and Stephens [2002],
which forms the basis of the standard CloudSat 2C-RAIN-
PROFILE product. The premise of the algorithm is that it
smoothly transitions from a reflectivity-driven solution at
light rain rates to an attenuation-driven solution at moderate
and heavy rain rates through the use of an integral constraint
on the path integrated attenuation, thus harnessing the noise
of attenuation as an exploitable signal and significantly
extending the useful range of CloudSat as a precipitation
Sensor.

[45] A rigorous characterization of measurement and
algorithm assumption uncertainties as well as the correlation
of assumption errors between radar range gates is outlined in
this paper. This error characterization serves two important
purposes. It determines the character of the transition from a
reflectivity-driven retrieval to an attenuation-driven retrieval
through a relative weighting of the attenuation and the
reflectivity observations and it provides a conservative
retrieval uncertainty estimate. A quantitative analysis of the
algorithm mechanics demonstrates that the retrieval transi-
tions between the reflectivity and attenuation modes within
the range of 0.1-0.5 mm h . At low rain rates the retrieval
uncertainty is dominated by the reflectivity observations and
is estimated at 150% while at higher rain rates the retrieval
uncertainty is dominated by the PIA and decreases mono-
tonically to a value of 40%. These relatively large uncertainty
estimates represent the random component of the error, which
can be reduced through adequate sampling, however we
emphasize that they do not address the more difficult issue of
biases that may remain due to regime-dependent algorithm
assumptions [e.g., Berg et al., 2006].

[46] The flexibility of the optimal estimation retrieval
framework used by the 2C-RAIN-PROFILE algorithm is
used here to implement several physical models. For exam-
ple, the visible optical depth is used as an additional integral
constraint on the cloud component of the total water path,
eliminating a critical assumption in the retrieval of light rain.
The standard retrieval with the optical depth constraint is used
to construct a parameterization of the cloud water path that
can be exploited at night when visible optical depth obser-
vations are unavailable. Tests of the retrieval with the cloud
water parameterization (no optical depth constraint) against
the standard retrieval (with optical depth constraint) show
differences less than 1% in the mean retrievals, indicating that
the cloud water parameterization is sufficiently accurate
for implementation in the 2C-RAIN-PROFILE algorithm.
Another element of this work specific to the retrieval of warm
rain is a representation of the precipitation DSD appropriate
for warm rain. Comparison of the standard retrieval against
a retrieval using a Marshall-Palmer DSD show that the
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Marshall-Palmer assumption overestimates the mean rain
rate by a factor of 2 and distorts the character of rain by
widening the distribution of derived rain rates. A model of
evaporation below cloud base that tends to reduce the surface
rain rate has also been included in the algorithm. Results
suggest that neglecting subcloud evaporation causes a 13%
high bias in the mean warm rain rate, and that most of this bias
derives from rain rates below 1 mm h™'. This result could
have significant regional implications in regimes where the
dominant mode of precipitation is that of drizzle falling from
stratocumulus. A more general enhancement of the retrieval
architecture is the implementation of fast multiple-scattering
radar model. This model is used to show that even in the warm
rain examined here, neglecting multiple scattering can result
in a bias of —24.4% in the mean rain rate. The model is further
used to show that the modeled multiple scattering is so sen-
sitive to the assumed DSD that use of a more accurate model
of multiple scattering is unjustified.

[47] Because of'its unique sensitivity to light rain, CloudSat
adds significantly to our understanding of the global hydro-
logic cycle. In particular it provides a rich view of warm rain
processes that are largely missed by conventional satellite
remote sensing. The algorithm developments reported here
are motivated by a desire to better quantify this missing rain
and form the basis of ongoing improvements to the opera-
tional 2C-RAIN-PROFILE product. With these modifi-
cations the 2C-RAIN-PROFILE product will provide a
complimentary view of global scale warm rain to that of the
TRMM PR [i.e., Kodama et al., 2009; Liu and Zipser, 2009],
ahead of future missions such as the Global Precipitation
Measurement Mission and the Aerosol/Cloud/Ecosystems
Mission both of which are scoped to fly dual wavelength
high-frequency radar systems.

[48] Acknowledgments. This study was supported by NASA Cloud-
Sat/CALIPSO science team research grant NNX10AM29G.
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