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ABSTRACT

Intercomparisons of satellite rainfall products have historically focused on the issue of global mean biases.
Regional and temporal variations in these biases, however, are equally important for many climate appli-
cations. This has led to a critical examination of rainfall estimates from the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR). Because of the time-dependent
nature of these biases, it is not possible to apply corrections based on regionally defined characteristics.
Instead, this paper seeks to relate PR–TMI differences to physical variables that can lead to a better
understanding of the mechanisms responsible for the observed differences. To simplify the analysis, issues
related to differences in rainfall detection and intensity are investigated separately. For clouds identified as
raining by both sensors, differences in rainfall intensity are found to be highly correlated with column water
vapor. Adjusting either TMI or PR rain rates based on this simple relationship, which is relatively invariant
over both seasonal and interannual time scales, results in a 65%–75% reduction in the rms difference
between seasonally averaged climate rainfall estimates. Differences in rainfall detection are most prominent
along the midlatitude storm tracks, where widespread, isolated convection trailing frontal systems is often
detected only by the higher-resolution PR. Conversely, over the East China Sea clouds below the �18-dBZ
PR rainfall detection threshold are frequently identified as raining by the TMI. Calculations based on in situ
aerosol data collected south of Japan support a hypothesis that high concentrations of sulfate aerosols may
contribute to abnormally high liquid water contents within nonprecipitating clouds in this region.

1. Introduction

Recent advances in sensor technology, most notably
related to the launch of the Tropical Rainfall Measur-
ing Mission (TRMM) in late 1997, along with improve-
ments in algorithm formulations have led to signifi-
cantly better and more consistent rainfall estimates
over the globe. The occurrence of an intense El Niño
event in late 1997 and early 1998 provided an opportu-
nity to observe the response of tropical precipitation to
ENSO using data from TRMM. Figure 1 shows a com-
parison of tropical mean rainfall from version 5 of the
TRMM Microwave Imager (TMI) 2A12 (Kummerow
et al. 2001) and precipitation radar (PR) 2A25 (Iguchi
et al. 2000) standard rainfall products over both land
(Fig. 1a) and ocean (Fig. 1b) regions. Over land, the

two estimates show remarkably good agreement, even
though the TMI retrieval relies on a less physically di-
rect scattering-based retrieval, which relates 85-GHz
brightness temperature depressions associated with fro-
zen hydrometeors to surface rainfall (Kummerow et al.
2001). Over ocean regions, however, the TMI estimates
in Fig. 1b show a significant increase in tropical mean
oceanic rainfall during the 1997/98 El Niño while the
PR estimates exhibit little or no response. Unfortu-
nately, the lack of realistic and verifiable error esti-
mates makes it impossible to determine if either the
response indicated by the TMI estimates or the lack of
response in the PR estimates is real or an artifact of the
retrievals. Interestingly, as shown in Fig. 1c, there is
excellent agreement between passive microwave rain-
fall estimates from various TMI and Special Sensor Mi-
crowave Imager (SSM/I) retrieval algorithms. This sug-
gests that the discrepancy in the response of the TMI–
PR estimates to ENSO is the result of fundamental
physical differences and is not because of differences in
sampling and/or algorithm formulation.
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Previous work by Berg et al. (2002) found that dis-
crepancies between satellite rainfall estimates averaged
over large spatial and temporal domains for climate
applications, like the one shown in Fig. 1, are the result
of time-dependent regional biases. Differences in 5-yr
mean rainfall from version 5 of the TMI 2A12 and PR
2A25 standard products are shown in Fig. 2. The tropi-
cal mean difference has been removed to emphasize the
magnitude of the regional differences because the TMI
2A12 version 5 estimates exceed those from the PR
2A25 by approximately 24% over the tropical oceans
and 20% over tropical land regions (Kummerow et al.
2001). Regionally, the TMI estimates show the largest
bias relative to the PR over the central/east Pacific
Ocean ITCZ, while the PR estimates exceed those from
the TMI by the largest margin over the area just east of
Australia in the subtropical south Pacific. Scatterplots
for three selected 10° � 10° regions roughly corre-
sponding to previous field experiments over tropical
ocean regions are also shown in Fig. 2. In all three cases
the individual points, which correspond to 1° latitude
� 1° longitude bins averaged over the entire 5-yr pe-
riod, have correlations between 0.97 and 0.98. This in-
dicates that the random errors have been reduced to a

very small level by averaging over such a long time
period. Regional biases remain, however, with the ratio
of the TMI to PR rain estimates varying from 1.08 over
Kwajalein, Republic of the Marshall Islands, to 1.19 in
the east Pacific and 0.97 in the Atlantic.

Both the temporal and regional rainfall biases shown
in Figs. 1 and 2 are the result of systematic changes in
precipitation systems associated with meteorological
regimes (Berg et al. 2002). Because satellite rainfall re-
trieval algorithms are fundamentally underconstrained,
a number of assumptions must be made in the retrieval.
In other words, it is necessary to assume some mean
value for parameters that are not directly measured by
the satellite. Variations in these parameters between
metrological regimes from the assumed values will re-
sult in regional/temporal biases in the rainfall estimates
as shown in Figs. 1 and 2. The assumptions made by
passive microwave retrievals (e.g., TMI) include the
height of the water column, the shape of the vertical
profile, the amount of cloud water (i.e., nonprecipitat-
ing drops), the shape and density of ice particles, the
relationship of liquid water content to rain rate, and
horizontal inhomogeneity within the sensor field of
view. The PR retrievals must assume values for sub-

FIG. 1. Time series of tropical mean rainfall anomalies (30°N–30°S) from the TRMM PR 3A25 and
TMI 3A12 rainfall products over (a) land and (b) ocean. The 3A12 and 3A25 products are simply
monthly accumulations of the instantaneous overpass estimates from the 2A12 and 2A25 retrieval
algorithms. (c) A comparison of passive microwave estimates from TRMM (3A12 and 3A11) and SSM/I
(Wilheit et al. 1991).
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pixel inhomogeneity as well as the drop size distribu-
tion (DSD), which impacts both the attenuation correc-
tion and the reflectivity-to-rain-rate (Z–R) relationship.
Regional and temporal variations in these and other
assumed parameters introduce errors that appear ran-
dom from a global perspective but are perceived as
systematic biases at a particular location (Fig. 2). Simi-
larly, an artificial enhancement or reduction in the “ob-
served” climate variability (Fig. 1) may result if tempo-
ral changes in these biases do not average out over the
globe.

Recognizing the importance of this issue for climate
rainfall applications, several researchers have examined
the impact of various assumptions on the PR and TMI
retrievals. Robertson et al. (2003) and Ikai and Naka-
mura (2003) investigated the impact of regional
changes in DSD on the PR attenuation correction and
Z–R relationship. They found strong evidence of DSD-
related regional biases and suggest that this is a serious
issue for studies of interannual variability. Although
TMI brightness temperatures are significantly less sen-
sitive to changes in DSD, Masunaga et al. (2002) deter-
mined that DSD assumptions do impact the conversion

from liquid water content to rain rate. Fu and Liu
(2001) showed regional variability in the shape of the
rain profile. Harris et al. (2000), Berg et al. (2002), and
Ikai and Nakamura (2003) found biases in the freezing-
level estimates used in TMI retrievals, especially over
midlatitude regions during winter. Bauer et al. (1999),
Olson et al. (2001), and Battaglia et al. (2003) investi-
gated the overestimation of stratiform rain by passive
microwave retrievals because of increased emission by
melting hydrometeors in the bright band. Kummerow
et al. (2004) quantified the impact of changes in the
spatial variability of rain within the satellite field of
view using collocated PR observations. They found re-
gional variations in the partial beam-filling correction
leading to biases as large as 15% over the Indian Ocean
but determined that the impact on the tropical mean
rainfall was less than 2%.

While progress has been made in identifying many of
the assumptions leading to climate regime biases,
changes over space and time complicate efforts to
quantify and/or remove them. Attempts to relate the
characteristics of precipitation systems to specific physi-
cal mechanisms globally are limited by the observing

FIG. 2. (top) Rainfall difference map between version 5 of the TRMM TMI (2A12) and PR (2A25) retrieval algorithms for the 5-yr
period from 1998 through 2002. The mean bias has been removed to emphasize regional differences. The difference map was created
from the 3G68 dataset, which matches the instantaneous TMI and PR estimates on a 0.5° � 0.5° grid. (bottom) Scatterplots of 5-yr mean
values from the two sensors averaged over 1° � 1° grid boxes for three regions corresponding to prior oceanic field programs. These
include 1) the Kwajalein Experiment (KWAJEX) in the west Pacific, 2) the Tropical East Pacific Process Studies (TEPPS) in the east
Pacific, and 3) the Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE) in the tropical Atlantic.
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capabilities of TRMM and other spaceborne sensors
(Nesbitt et al. 2000, 2004; Petersen and Rutledge 2001;
Berg et al. 2002; Del Genio and Kovari 2002; Masunaga
et al. 2005). Detailed observations from field experi-
ments have been used to relate changes in convective
structure to synoptic conditions (Chen et al. 1996; Rick-
enbach and Rutledge 1998; DeMott and Rutledge
1998a,b; Houze et al. 2000; Petersen et al. 2002, 2003),
although it is unclear how to export these results to
other regions/times. The common theme of these stud-
ies, however, is that there is a robust underlying rela-
tionship between the organization and vertical struc-
ture of convection and the synoptic environment. The
spatial organization of precipitating systems, their ver-
tical development, and the partitioning between con-
vective and stratiform rainfall are all found to be strong
functions of surface temperature, integrated water va-
por, buoyancy, low-level shear, and convergence in the
surrounding environment. Given that differences in the
characteristics of rain systems lead to biases in the sat-
ellite products (Berg et al. 2002), our goal is to relate
PR–TMI differences to physical variables that can lead
to a better understanding of the mechanisms respon-
sible for the observed differences. By identifying vari-
ables that can act as proxies for systematic differences
between rainfall estimates from the two sensors we
hope to eliminate the need to define rainfall climate
regimes by regional and temporal boundaries.

2. Data

The data used in this analysis include TRMM rainfall
estimates from version 5 of the TMI 2A12 (Kummerow
et al. 2001) and the PR 2A25 (Iguchi et al. 2000) re-
trieval algorithms. The TRMM satellite is in a 350-km
circular orbit with an inclination of 35°. To save fuel
used in station-keeping operations and to prolong the
life of the mission, the TRMM orbit was boosted to 402
km in August 2001. However, only data from the pre-
boost period were used in the following analysis. The
TMI is a nine-channel dual-polarized passive micro-
wave radiometer with a swath width of 759 km and a
nominal resolution of 30 km � 18 km for the 19.35-GHz
channels, which provide the primary liquid water emis-
sion information utilized in the ocean retrieval algo-
rithm. The PR is the first and currently the only space-
borne precipitation radar. It has a swath width of 215
km, a nominal spatial resolution of 4.3 km at nadir, and
a vertical resolution of 250 m. Detailed specifications
for the TRMM spacecraft as well as the TMI and PR
instruments are provided by Kummerow et al. (1998,
2000).

Because the retrieval techniques employed for the
active (PR) and passive (TMI) TRMM sensors rely on

different physics, collocated estimates from these sen-
sors are used to provide insights into the physical
mechanisms leading to errors in the retrievals. Given
that the spatial resolution of the TMI sensor is signifi-
cantly lower than that of the PR, the PR rain estimates
have been averaged over the 19-GHz footprint of the
TMI using a Gaussian weighting scheme, which pro-
vides a close approximation to the TMI antenna pattern
or field of view. Bennartz (1999) provides more details
regarding using a Gaussian approximation to the radi-
ometer antenna pattern. While there is some uncer-
tainty in the matchups resulting from the different view
angles between the sensors, this presumably random
effect should average out over a large number of
samples.

3. Differences in mean DJF 1999/2000 rainfall
from PR and TMI

Pixel-level PR and TMI estimates were matched over
a 3-month period from December 1999 through Febru-
ary 2000 (DJF 1999/2000). The estimates were matched
at the pixel level to minimize the effect of averaging
raining with nonraining pixels and/or multiple storm
types. It was determined using 0.5° � 0.5° gridded av-
erages from the 3G68 dataset that even this level of
pixel averaging significantly reduced the correlation be-
tween the rainfall biases and the selected proxy vari-
ables. To simplify the analysis we have chosen to sepa-
rately address the issues of rainfall detection and rain-
fall intensity. The rainfall detection problem can be
further divided into the case where the PR algorithm
detects rain but the TMI does not, and the case where
the TMI retrieval detects rain but the PR does not. For
the case of light rain that is undetected by either sensor
Schumacher and Houze (2000) used ground-based ra-
dar observations at the Kwajalein atoll in the west Pa-
cific and found that the PR missed only 2.3% of near-
surface rainfall, although it missed 46% of the near-sur-
face rain area. While this may vary significantly from
region to region, with the upcoming launch of Cloud-
Sat, which will fly a much more sensitive cloud radar,
that issue should be better suited to be addressed
(Stephens et al. 2002). The final case, and the one re-
sponsible for the most significant climate rainfall biases,
occurs when both sensors detect rain, but provide dis-
parate estimates of the intensity.

Figure 3 shows the relative magnitude for each of
these bias sources during DJF 1999/2000. Note that the
range of values for the differences in rainfall detection
shown in Figs. 3e and 3f is one-half of that of the range
shown in Figs. 3c and 3d. The relative difference be-
tween Figs. 3c and 3d indicates the impact of the dif-
ferences in rainfall detection. While responsible for a
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FIG. 3. Seasonal mean rainfall estimates from (a) TMI 2A12 and (b) PR 2A25 over the period from December
1999 through February 2000. The difference between the 2A12 and 2A25 estimates (c) using all of the collocated
observations, and (d) including only those estimates for which both sensors detect rain. Rainfall threshold differ-
ences based on matched pixels indicating rainfall by (e) TMI and (f) PR only.
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relatively small fraction of the total climate rainfall dif-
ference over many regions, rainfall detection differ-
ences have a considerable impact over some regions.
East of Japan there is a substantial amount of rain de-
tected only by the PR, and over the East China Sea a
sizable portion of the total climate rainfall difference is
because of rain systems detected only by the TMI.

a. Rainfall detection (PR only)

The 17-dBZ threshold of the PR limits it to detecting
rain rates greater than 0.2–0.4 mm h�1 over its �4 km
field of view (Schumacher and Houze 2000). While the
sensitivity of the TMI brightness temperatures is better
than 1 K (Kummerow et al. 2000), the sensitivity of the
retrieval algorithm is limited primarily by the difficulty
of distinguishing precipitating from nonprecipitating
clouds. Assuming a Marshall–Palmer (Marshall and
Palmer 1948) drop size distribution, a cloud with

0.3 kg m�2 of cloud water, which roughly corresponds
to the rain/no-rain threshold used in the TMI retrieval
algorithm (Kummerow et al. 2001), would produce the
same emission signal as that of a cloud with a 4-km
freezing height raining at 0.8 mm h�1. In addition, the
relatively coarse resolution of the TMI (�25 km)
in comparison with that of the PR (�4 km) means that
over regions with frequently occurring isolated rain
showers covering only a small portion of the TMI field
of view, the TMI retrieval will necessarily underesti-
mate rainfall because of its inability to resolve many of
these events (Petty 1995, 1997). Figure 4 shows TMI
and PR rain estimates over the northern subtropical
Pacific along with the Visible and Infrared Scanner
(VIRS) cloud-top temperature data for 1 February
2000. Although both sensors detect the intense rainfall
associated with the frontal bands just east of the date
line and at 140°W, the PR rain estimates indicate wide-

FIG. 4. (a) TMI 2A12 rainfall, (b) PR 2A25 rainfall, (c) VIRS cloud-top temperatures, and (d) model-derived sulfate aerosol optical
depth for 1 Feb 2000. The nonraining portions of the TMI scan outside of the PR scan in (a) are gray; those nonraining TMI pixels
within the PR scan are white.
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spread low-intensity rainfall behind the main system in
the region north of 30°N between 150° and 180°E. The
VIRS data confirm the presence of widespread patchy
clouds over this region with relatively warm cloud
tops. An examination of similar rain maps over the
entire 3-month period indicates that this sort of weak
isolated rainfall trailing eastward-propagating Pacific
frontal bands occurs frequently poleward of 25°N. Of
course, isolated rain cells occur across the globe result-
ing in a higher frequency of rain from the PR, but as
Fig. 3f shows, during DJF 1999/2000 rainfall that es-
capes detection by the TMI accounts for a significantly
higher percentage of the total rainfall in the midlatitude
frontal regions than it does anywhere in the deep Trop-
ics.

b. Rainfall detection (TMI only)

A widespread area of low-intensity rainfall identified
by the TMI retrieval over the East China Sea, but not
detected by the PR is also present in Fig. 4. Although
the maximum TMI-estimated rain rates in this system
are less than 4 mm h�1, this corresponds to a signifi-
cant amount of liquid water in the atmospheric column.
Liquid water path (LWP) estimates from an optimal
estimation retrieval algorithm indicate values exceed-
ing 1 kg m�2 in the areas of heaviest TMI-only rainfall.
Because this is well above the effective threshold be-
tween cloud water and rain used by virtually all emis-
sion-based passive microwave retrieval algorithms, in-
cluding the TMI 2A12, this feature would likely be re-
trieved as raining by any of these techniques. This
would not be the case for scattering-based algorithms,
however, because comparisons with raw TMI bright-
ness temperatures (not shown) indicate a significant
emission signal resulting from liquid hydrometeors but
little or no scattering signal associated with frozen hy-
drometeors aloft. This is consistent with the VIRS in-
frared data shown in Fig. 4c, which indicate shallow
clouds with the coldest cloud-top temperatures be-
tween 250 and 260 K.

A possible explanation for the absence of rainfall in
the PR retrieval could be due, in part, to a modification
of the size distribution of cloud droplets by aerosol par-
ticles along the lines of the second indirect aerosol ef-
fect proposed by Albrecht (1989). Indeed, aerosol op-
tical depths (AOD) from the Georgia Tech/Goddard
Global Ozone Chemistry Aerosol Radiation and Trans-
port (GOCART) model (Chin et al. 2000a, 2000b),
shown in Fig. 4d, indicate high concentrations of sulfate
aerosols in this region. Furthermore, comparisons
throughout the DJF 1999/2000 period indicate that the
occurrence of TMI-only rainfall in this region generally
corresponds to similarly high sulfate AODs. The high

frequency of occurrence of TMI-only rain systems in
this region results in a substantial overestimate by the
TMI retrieval relative to the PR, which is evident in
Figs. 3c and 3e. Insights into the plausibility of this
mechanism can be gleaned from the Kessler-type pa-
rameterizations that are often used to represent the
autoconversion of cloud droplets to raindrops in global
climate models (GCMs). Consider the analytical ex-
pression for the critical radius required for the forma-
tion of embryonic raindrops that was developed by Liu
et al. (2004):

rc � �� 3
4��2 �2

�
�con

N

L2�1�6

� 4.09 � 10�4�con
1�6

N1�6

L1�3 ,

�1�

where N is the number concentration of cloud droplets
(cm�3), L is the liquid water content (LWC; g m�3),
and �con � 1.15 � 1023 s�1. Liu and Daum (2004) dem-
onstrate that autoconversion occurs when the sixth-
moment radius, given by

r6 � � 3
4��w

�1�3

��L

N�1�3

, �2�

where 	 � 1.12 and 
w is the density of water, exceeds
rc. Equating Eqs. (1) and (2), it can be demonstrated
that autoconversion should occur any time the number
concentration of cloud droplets in a cloud is fewer than

Nc � 24.362L4�3. �3�

The critical number concentration defined in Eq. (3)
is plotted as a function of LWC in Fig. 5. Clouds with
a number concentration below Nc are assumed to con-
tain large enough droplets to induce sufficient colli-
sion and coalescence to produce the embryonic rain-
drops necessary for precipitation development. On the
other hand, no rainfall development is expected in
clouds containing a higher concentration of small drop-
lets because of a reduction in both the frequency of
collisions and the coalescence efficiency between such
droplets. This is the fundamental principle underlying
the second indirect aerosol effect—that increased
concentrations of hygroscopic aerosols leading to
corresponding increases in the number of cloud drop-
lets may potentially suppress the formation of precipi-
tation.

Although it is an approximation, Nc provides a rough
guideline for estimating the maximum amount of liquid
water that the atmosphere can hold in the form of
clouds before the onset of precipitation. For reference,
observations of cloud droplet concentrations in “clean”
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and “polluted” air masses obtained during the Asian
Particle Environmental Change Studies (APEX) ex-
periment that took place in the sea off the coast of
Kyushu, Japan, in 2003 (Ishizaka et al. 2003) are illus-
trated in Fig. 5. The polluted air mass, characterized by
400 cloud droplets per cubic centimeter, can support
approximately twice as much cloud water before pre-
cipitation is induced as can a clean air mass containing
150 droplets per cubic centimeter. In the rainfall scene
in Fig. 4, TMI observations suggest that LWPs in the
East China Sea region range from 0.5 to 1.2 kg m�2.
Such values are generally assumed to be indicative of
rainfall, but Fig. 5 demonstrates that this is not neces-
sarily the case in a polluted environment. In such a case,
a 1.5-km-thick cloud with an LWP of 1 kg m�2 may
contain enough droplets to preclude the development
of significant precipitation.

Because radar reflectivity is sensitive to drop size to
the sixth power, the distinction between cloud droplets
and raindrops is a critical factor governing the ability of
the PR to detect liquid water. Suppose, for example, the
PR encounters a pixel containing a 1.5-km-thick cloud
with an LWP of 1 kg m�2. Figure 6 illustrates two DSDs
that could represent this cloud�one corresponding to
the convective rainfall DSD assumed by the PR rainfall
algorithm (Iguchi et al. 2000) and the other correspond-
ing to a combination of cloud and drizzle droplets. The
cloud and drizzle droplets are modeled as a sum of two
lognormal distributions,

N�r� �
Ncld

�log,cldr�2�
exp���ln

r

rg,cld
�2

2� log,cld
2 �

�
Nd

�log,dr�2�
exp���ln

r

rg,d
�2

2� log,d
2 �, �4�

with geometric mean radii Rg,cld � 9 m and Rg,d � 50
m and width parameters �log,cld � 0.5 and �log,d �
0.35, consistent with the drizzle observations of Frisch
et al. (1995) and the liquid cloud climatology of Miles et
al. (2000). The total number concentration of cloud
drops (Ncld) is fixed at 400 cm�3, consistent with the
observations of Ishizaka et al. (2003) for a polluted air
mass, leaving �15% of the total LWC to occur in the
form of drizzle. This leads to a total number of drizzle
drops Nd � 0.7 cm�3, which is in good agreement with
the concentrations observed by Frisch et al. (1995).

For this case, the raindrop DSD yields a reflectivity
of 40 dBZ while the cloud/drizzle distribution yields
that of 18 dBZ. Using the Z–R relationship from the PR
2A25 retrieval, this corresponds to rainfall rates of 15
and 0.3 mm h�1, respectively. In fact, because the mini-
mum detectable signal of the PR is �18 dBZ, it is pos-
sible that the combinations of cloud and drizzle would
not be detected. The absence of rainfall in the PR es-
timates over the East China Sea in Fig. 4 can therefore

FIG. 5. Critical number concentration for the autoconversion of cloud droplets to
precipitation using the Kessler-type parameterization of Liu and Daum (2004).
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be reconciled with the 1 kg m�2 LWP retrieved from
collocated TMI observations if one adopts a DSD that
might be expected in cases of heavy sulfate aerosol con-
centrations, as shown in Fig. 4d. These calculations
should not, however, be interpreted as proof that rain-
fall suppression by aerosols is the sole factor respon-
sible for nonzero TMI rainfall rates in the absence of
any signal in the PR. Instead, they are meant to test the
plausibility of such a mechanism, indicating that it
could produce in principle the observed inconsistency
between the TMI and PR rain estimates.

c. Rainfall intensity

The most significant climate rainfall biases occur
when both sensors/algorithms detect rain, but they pro-
vide different estimates of the intensity. As shown in
Fig. 3d, the impact of these differences in rainfall in-
tensity can be substantial. Because of seasonal and in-
terannual changes in the regional patterns, however, it
is of little value to characterize these differences by
region. Instead, our goal is to identify a globally ob-
servable physical variable that can be used as a proxy
for the systematic differences between the TMI and PR
rain estimates. A number of different variables were
investigated, including sea surface temperature (SST);
total column water vapor and surface wind speed ob-
servations from TMI (Wentz and Spencer 1998; Wentz
et al. 2000); ocean surface wind speed and divergence
estimates from the Quick Scatterometer (QuikScat);
relative humidity at several levels from the National
Centers for Environmental Prediction–National Center
for Atmospheric Research (NCEP–NCAR) and the

European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalyses; AODs from the GOCART
model; and storm system characteristics from PR ob-
servations within the TMI field of view, including storm
height, brightband height, convective rain fraction,
mean surface rain rate, mean surface reflectivity, and
spatial inhomogeneity.

The specified variables were matched to instanta-
neous TRMM rain estimates at the TMI resolution.
Variables such as SST and ocean surface wind speed,
which cannot be retrieved for raining scenes, were in-
terpolated from neighboring pixels. Column water va-
por estimates are retrieved for pixels with rain rates
below �15 mm h�1 (Wentz and Spencer 1998) and are
interpolated from neighboring pixels for more intense
rain systems. Matched raining pixels for the entire
3-month period (�5.3 million) were divided into 30 cat-
egories based on the variable being analyzed, and mean
values of the TMI/PR surface rainfall ratio were com-
puted for each category. The pixel-level TMI rain esti-
mates were then “adjusted” based on the mean rainfall
ratio corresponding to the value of the collocated proxy
variable. It should be noted that the purpose of this
adjustment was not to correct for any climate biases
because that would imply that the PR estimates were
unbiased, but was instead to determine if the TMI–PR
differences were correlated with a given proxy variable.
To evaluate the impact of this adjustment, climate rain-
fall estimates were computed from both the original
and adjusted TMI estimates over 1° latitude � 1° lon-
gitude boxes for the entire 3-month period. While an
adjustment based on many variables, including SST, re-

FIG. 6. Precipitation (dashed curve) and drizzle (dotted curve) DSDs, each with an LWC of
0.8 g m�3.
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sults in a significant decrease in the TMI–PR difference
over certain regions, increases over other regions indi-
cate a regional dependence in the relationship between
the candidate proxy variable and the rainfall difference.
The relationship of TMI–PR differences to column wa-
ter vapor estimates, however, does not appear to vary
significantly between regions. Figure 7 shows the mean
TMI/PR rainfall ratio as a function of column water
vapor. For low-water-vapor regions, which occur exclu-
sively in midlatitude areas, the PR rain estimates ex-
ceed those from the TMI, while over moist, deep tropi-
cal regions the TMI estimates exceed those from the
PR by almost a factor of 2.

Difference maps between the TMI and PR climate
rainfall estimates are shown in Fig. 8 for the original
and adjusted rainfall estimates based on the relation-
ship with column water vapor shown in Fig. 7. Both the
rainfall difference maps and scatterplots of the 3-month
binned averages shown in Figs. 8c and 8d indicate a
significant reduction in variance after the water vapor–
based rainfall adjustment. The rms difference between
the 3-month gridded estimates is reduced from 1.18 to
0.36, amounting to a nearly 70% reduction in the vari-
ance of the climate rainfall differences between the two
sensors. Not all of the systematic regional differences
are related to column water vapor because residual bi-
ases remain; however, the remaining differences are
comparatively small.

4. Time-dependent variations

To evaluate the impact of seasonal and interannual
changes on differences between the PR and TMI esti-
mates, rainfall difference maps are shown in Fig. 9 for

six different 3-month periods. These six periods include
the 1997/98 El Niño and subsequent La Niña, which
extended from late 1998 through 2000, as well as the
annual cycle between December 1999 and November
2000. The largest differences between TMI and PR are
evident during DJF 1997/98, when El Niño conditions
led to a substantial increase in rainfall across the central
and east Pacific. Relative to the PR estimates, the over-
estimation of rainfall by the TMI is the largest and most
widespread at this time, although the central/east Pa-
cific ITCZ regularly exhibits sizable differences. Con-
versely, the PR estimates exceed those from the TMI in
areas with minimal rainfall and in the midlatitudes,
most notably over the Pacific during winter.

Figure 10 shows the impact of differences in rainfall
detection between the two algorithms/sensors for all six
seasons. The cases where only one of the two sensors/
algorithms detect rain, as shown in Figs. 3e and 3f, have
been combined with green/yellow/orange colors, indi-
cating areas dominated by cases where rain is detected
by TMI only, and blue/purple colors, indicating regions
dominated by PR-only rain. The largest impact of PR-
only rainfall is from persistent isolated rainfall occur-
ring over midlatitude regions during winter, although
this is also an issue throughout the tropical convergence
zones. Differences resulting from cases where the TMI
detects rain that the PR does not appear to primarily be
an issue outside of the Tropics. The bull’s-eye over the
East China Sea that is evident during DJF 1999/2000
occurs during the other seasons as well, although it is
most pronounced during DJF. Figure 11 shows mean
seasonal AODs from the Moderate Resolution Imaging
Spectroradiometer (MODIS) based on 4 yr of observa-

FIG. 7. The ratio of TMI to PR rain rate as a function of column water vapor for DJF
1999/2000.
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tions. While the period of the aerosol observations does
not correspond directly to the periods shown in Fig. 10,
high aerosol concentrations during DJF and March–
May (MAM) over the East China Sea correspond with
the frequent occurrence of TMI-only rainfall during
those seasons. In addition, the eastward extent of TMI-
only rainfall during MAM 2000 appears to correspond
to particularly high AODs extending across the Pacific.
While the apparent association between aerosols and
rain threshold biases do not prove anything, it does
advocate further study.

To determine whether the relationship between the
TMI/PR rainfall ratio and column water vapor changes
over time, the analysis described in section 3c was per-
formed for all six seasons shown in Fig. 9. Figure 12
shows the relationship between the mean TMI/PR rain
ratio and column water vapor for each period. Changes

in this relationship associated with the annual cycle are
shown in Fig. 12a and changes resulting from interan-
nual variability associated with El Niño are shown in
Fig. 12b. While there appears to be both seasonal and
interannual variations, the curves are remarkably con-
sistent. To determine the significance of these differ-
ences, mean values of the TMI/PR rainfall ratio were
computed from the entire 18-months of data as shown
by the black curves in Fig. 12. This “universal” relation-
ship was then used to adjust the TMI rain estimates for
each of the six periods. Comparing the results shown in
Fig. 13 with the original difference maps in Fig. 9, it is
apparent that there is a substantial decrease in the vari-
ability of the climate rainfall differences across all sea-
sons including DJF 1997/98. Residual differences re-
main, most notable in the Bay of Bengal during June–
August (JJA) 2000, but the water vapor–based rainfall

FIG. 8. The difference between seasonally averaged TMI 2A12 and PR 2A25 matched rainfall estimates for DJF 1999/2000 (a) before
and (b) after the TMI rain estimates have been adjusted based on the column water vapor–categorized TMI/PR rainfall ratio.
Scatterplots of the TMI vs PR rainfall estimates averaged over the 3-month period and 1° lat � 1° lon boxes (c) before and (d) after
the water vapor adjustment.
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adjustment appears to be robust for both seasonal and
interannual time scales.

Rms differences between the PR and TMI climate
rainfall estimates are given in Table 1 for the original

and the adjusted values based on the universal (18
month) mean values. Results are given for the column
water vapor–based rainfall adjustment, as well as simi-
lar adjustments using SST, surface wind speed, and

FIG. 9. Maps of the TMI � PR3-month mean rainfall for the seasons of DJF 1997/98, DJF 1998/99, DJF 1999/2000, MAM 2000,
JJA 2000, and SON 2000.
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both the PR and TMI rain rates. The water vapor–
based rainfall adjustment consistently reduces the rms
difference by 65%–75%. From Table 1 the rms of the
water vapor–adjusted estimates was 0.38 for DJF 1999/

2000 using the universal adjustment, while this de-
creased to just 0.36 using the adjustment based on only
the DJF 1999/2000 data. The other proxy variables
show mixed success with a wind speed–based adjust-

FIG. 10. Maps of the differences in rainfall detection for the seasons of (top to bottom) DJF 1997/98, DJF 1998/99, DJF 1999/2000,
MAM 2000, JJA 2000, and SON 2000. Warm colors (green/yellow/orange) represent areas dominated by TMI-only rainfall while cool
colors (blue/purple) highlight those dominated by PR-only rainfall.
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ment providing the next most significant improvement.
An adjustment based on SST varies significantly be-
tween seasons, suggesting that the cloud properties that
are associated with warmer SSTs in the central/east Pa-
cific during the 1997/98 El Niño differ from the cloud
properties over regions of warm SSTs during other
years/seasons. Using rainfall intensity as a proxy for
PR/TMI differences also leads to a significant reduction
in the rms, which is independent of whether the TMI or
PR rainfall estimates are used. For light rain events the
TMI significantly overestimates relative to the PR,
while for intense rain events the PR estimates exceed
those from the TMI. None of these other proxy vari-
ables, however, produce as large a reduction in rms,

suggesting that column water vapor is most closely as-
sociated with regime-dependent structural and micro-
physical changes in rain systems, which lead in turn to
biases in the TMI and PR rainfall estimates.

5. Algorithm assumptions leading to climate biases

As discussed in the summary of previous studies, a
number of assumptions in both the TMI and PR re-
trieval algorithms may be responsible for the climate
rainfall differences. Given the relationship of the TMI/
PR differences with column water vapor, it is likely that
many of the assumptions producing biases in the re-
trievals are correlated with water vapor. Observations

FIG. 11. Seasonal mean AODs from MODIS for the period from September 2000 through August 2004.

MARCH 2006 B E R G E T A L . 447

Fig 11 live 4/C



FIG. 12. The ratio of TMI to PR rain rate as a function of column water vapor for (a) DJF 1999/2000, MAM 2000, JJA 2000, and SON
2000, and (b) DJF 1997/98, DJF 1998/99, and DJF 1999/2000. The black line is the mean for all six periods/seasons (18 months).
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from the PR can be used to investigate a number of
TMI algorithm assumptions, including the freezing
height, the shape of the rain profile, and rainfall inho-
mogeneity within the TMI field of view (Kummerow et

al. 2004). Figure 14 shows how two assumptions in the
TMI retrieval— the height of the freezing level and the
shape of the rain profile—vary as a function of column
water vapor.

FIG. 13. Residual TMI � PR difference maps after the water vapor–based rainfall adjustment for the seasons of (top to bottom)
DJF 1997/98, DJF 1998/99, DJF 1999/2000, MAM 2000, JJA 2000, and SON 2000.
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The 2A12 algorithm calculates an estimate of the
freezing level using the technique developed by Wilheit
et al. (1991), which is then used to select profiles from
the cloud model database used in the Bayesian retrieval

scheme (Kummerow et al. 2001). The TMI 2A12 freez-
ing height is shown as a function of water vapor in Fig.
14a, along with the input Wilheit freezing-level esti-
mate and the corresponding PR brightband height. Al-

TABLE 1. Rms differences (mm day�1) between TMI and PR rainfall estimates averaged over 3 months and 1° lat � 1° lon boxes.
The original values are the unmodified values; the other columns give the rms differences for the TMI rain estimates, which have been
adjusted based on various proxy variables, including column water vapor, SST, ocean surface wind speed, TMI rainfall rate, and PR
rainfall rate. The values in parentheses are the rms values for the adjusted TMI rain estimates as a percentage of the rms for the original
TMI rain estimates.

Season Original Water vapor SST Wind speed TMI rainfall rate PR rainfall rate

DJF 1997/98 1.80 0.44 (25%) 0.74 (41%) 0.86 (48%) 1.10 (61%) 1.03 (57%)
DJF 1998/99 1.27 0.39 (31%) 1.02 (80%) 0.55 (44%) 0.72 (56%) 0.63 (50%)
DJF 1999/2000 1.18 0.38 (32%) 1.04 (88%) 0.60 (50%) 0.71 (59%) 0.64 (54%)
MAM 2000 1.16 0.38 (35%) 1.03 (94%) 0.50 (46%) 0.64 (59%) 0.56 (51%)
JJA 2000 1.28 0.42 (35%) 1.08 (89%) 0.58 (48%) 0.73 (60%) 0.64 (53%)
SON 2000 1.29 0.36 (30%) 1.01 (85%) 0.46 (38%) 0.69 (58%) 0.57 (48%)
Mean 1.33 0.40 (31%) 0.99 (76%) 0.59 (46%) 0.76 (59%) 0.68 (53%)

FIG. 14. Differences between 2A12 and 2A25 algorithm assumptions as a function of column
water vapor. (a) The freezing height from the 2A12 algorithm and the 3A11 algorithm, along
with the brightband height from the 2A25 algorithm. (b) The differences between the TMI
freezing-level estimates and the PR brightband height. (c) The rain profile ratio for the 2A12
and 2A25 vertical profile retrievals, which is defined as the ratio of the mean rain rate between
the surface and the bright band (determined from the PR) to the surface rain rate. (d) The
rainfall contribution (%) for a given water vapor category for both the 2A12 and 2A25
retrievals.
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though the freezing level is at the top of the melting
layer and therefore above the bright band, differences
between these two freezing-level estimates and the
PR brightband height shown in Fig. 14b indicate sub-
stantial changes as a function of water vapor. The freez-
ing-level estimates are within 300 m of the brightband
height for high-water-vapor regions in the deep Trop-
ics, but the mean difference increases to more than 1
km over the drier midlatitude regions. This result is
consistent with previous studies by Harris et al. (2000)
and Ikai and Nakamura (2003). Because an overesti-
mate in the freezing level leads to a corresponding un-
derestimate in the surface rainfall, this apparent high
bias in the estimated freezing level over low-water-
vapor regions may be largely responsible for the rela-
tive TMI rainfall deficiency over these dry areas de-
picted in Fig. 14d.

Changes in the shape of the rain profile as a function
of column water vapor are indicated in Fig. 14c. The
ratio of the vertically averaged rain rate between the
surface and the PR bright band to the surface rain rate
is computed to provide a simple measure of changes in
the profile. While the TMI rain profiles contain consis-
tently more water above the surface than do those of
the PR, the dependence of a rain profile bias on water
vapor is less apparent than in the freezing-level case.
Clearly, further study into the impact of errors in these
and other assumptions on the 2A12 algorithm is
needed. As the examples shown in Fig. 14 indicate,
however, evaluating errors in the algorithm assump-
tions as a function of column water vapor provides a
way to investigate the global impact of errors in the
algorithm assumptions that is independent of region
and/or time.

6. Summary and discussion

The time-dependent nature of regional biases in the
TRMM rainfall products means that these data may be
inappropriate for some regional climate studies and/or
investigations of climate variability. It also means that it
is not possible to describe, and ultimately remove, these
biases based on regionally defined characteristics. In-
stead, we have attempted to identify globally observ-
able physical variables that can be used as a proxy for
PR/TMI differences and, by association, the corre-
sponding regime-dependent cloud properties. These
proxy variables can then be used to identify, describe,
and subsequently remove satellite rainfall biases using
observations from field programs and/or complemen-
tary satellite sensors.

While climate rainfall biases resulting from differ-
ences in rainfall detection account for a relatively small

fraction of the total, the impact is substantial over cer-
tain regions. Given the inherently higher spatial reso-
lution of the PR it is capable of detecting smaller, more
isolated rain systems than the TMI, with its larger foot-
print. The frequency of occurrence of these isolated
systems, however, exhibits significant regional variabil-
ity, with the largest contribution coming from wide-
spread isolated convection trailing midlatitude frontal
systems during winter. The more challenging case to
understand involves the detection of light rainfall by
the TMI, which is not seen by the PR. This has a rela-
tively small contribution to the total rainfall, with the
exception of an area centered over the East China Sea.
The frequent occurrence of rainfall detected by the
TMI only in this region may to be linked to high-sulfate
AODs. A hypothesis has been developed relating the
presence of polluted air over this region to smaller
cloud drops, which in turn allow for a significant in-
crease in the amount of liquid water that the atmo-
sphere can hold in the form of clouds before the onset
of significant precipitation. Because the PR is relatively
insensitive to clouds and light drizzle, this scenario pro-
vides a possible explanation for the absence of rain in
the PR estimates associated with the high LWPs ob-
served by the TMI. If true, this means that these TMI-
only rain cases are either not precipitating or contain
very light precipitation.

The bulk of the differences between the TMI and PR
climate rainfall estimates are the result of differences
in the estimated rain intensity. While previous studies
have shown evidence relating these differences to
changes in the assumptions used by the PR and TMI
retrieval algorithms, temporal variations resulting from
El Niño and the annual cycle make it impossible to
export regional results from field studies. To address
this issue over the entire TRMM ocean region we
have identified total column water vapor as a proxy
variable for TMI/PR differences. Accurate estimates
of column water vapor are readily available over the
global oceans from passive microwave sensors such as
TMI for all but the most intense rainfall scenarios,
in which case they can be interpolated from neighbor-
ing pixels. In addition, the relationship between col-
umn water and TMI/PR differences is very consistent
from season to season and even between El Niño
and La Niña. Categorizing the TMI/PR bias as a func-
tion of column water vapor and adjusting the TMI
rain-rate estimates based on this relationship results
in a consistent reduction of 65%–75% in the rms dif-
ference between PR and TMI climate rainfall esti-
mates.

Because changes in algorithm assumptions can im-
pact algorithms in very different ways, the goal of this
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study has not been to identify how specific assumptions
lead to climate biases in the TMI and PR retrievals, but
to develop a mechanism to identify and subsequently
correct for errors resulting from these systematic
changes. As Fig. 15 shows, the changes between version
5 and the recently released version 6 of the TRMM
algorithms have a significant impact on the regional and
temporal differences between the two algorithms, al-
though substantial regional differences remain. The
value of a proxy variable is not necessarily the physical
relationship between column water vapor and cloud
properties (although that warrants further investiga-
tion), but the ability to characterize changes in the al-
gorithm assumptions independent of location and time.
In the case of the TMI 2A12 algorithm, examining the
assumption of freezing-level height as a function of col-
umn water vapor reveals a substantial bias relative to
the observed PR brightband height. This suggests that a
freezing height correction based on column water vapor

may provide a means to remove a significant source of
bias in the retrieval. Further examination of the impact
of errors on the TMI and PR retrieval assumptions,
such as the freezing level, is clearly needed. Categoriz-
ing changes in these assumptions in terms of the column
water vapor, however, eliminates the need to charac-
terize changes by region and/or time and provides a
mechanism for exporting results from field programs
and other in situ observations to other regions and/or
seasons.
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FIG. 15. Differences between TMI 2A12 and PR 2A25 rainfall averaged over the 5-yr period from 1998 through 2002 for (top) version
5 and (middle) version 6 of the retrieval algorithms. (bottom) Scatterplots of the rain estimates over 1° lat � 1° lon boxes for the same
three regions as shown in Fig. 2.
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