
1.  Introduction
The Arctic is rapidly warming due to increasing greenhouse gases in the atmosphere (Najafi et al., 2015; Over-
land et al., 2019). Since the beginning of the modern satellite era, the 14 lowest sea ice extent minima have all 
occurred since 2007 (Scott, 2020), with all seasons experiencing sea ice decline (Stroeve & Notz, 2018). On 
land, snow cover is also declining, with longer melt seasons (Wang et al., 2018) and a “greening” of the Arctic 
(Myers-Smith et al., 2020; Zhu et al., 2016). These changes in surface cover impact surface-atmosphere heat and 
moisture exchanges (Serreze & Barry, 2011) creating a fundamentally different environment that has been termed 
the “new Arctic” (Carmack et al., 2015).

The balance of radiant energy entering and leaving the arctic system is a critical driver of this new Arctic. In equi-
librium, incoming solar, or shortwave (SW), radiation at the top of the atmosphere (TOA) is balanced by the sum 
of solar radiation reflected by the atmosphere and surface and outgoing thermal emission from the Earth. Imbal-
ances owing to changes in absorbed solar radiation can enhance warming locally relative to the global mean. As 
snow and ice covers recede in response to anthropogenic warming, more solar energy is absorbed at the surface, 
leading to warmer temperatures that further increase surface melt in processes known as ice and snow-albedo 
feedbacks (Curry et al., 1995).

The amount of SW radiation that reaches the surface is, however, strongly modulated by clouds (L’Ecuyer 
et al., 2019). In the Arctic, clouds' impact on SW is particularly large during summer when the sun shines con-
tinuously above the Arctic Circle (Kay et al., 2016; Sedlar et al., 2011). The atmosphere, mainly clouds, accounts 
for at least two thirds of the planetary albedo (Qu & Hall, 2005). Arctic cloud cover is typically greater than 65% 
throughout the year (Comiso & Hall, 2014), and this persistent cloud cover reduces interannual variability in the 
TOA albedo, despite larger year to year variations in sea ice, snow cover, and surface albedo in the new Arctic 

Abstract  Recent satellite observations confirm that the Arctic is absorbing more solar radiation now than 
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Plain Language Summary  The Arctic has been rapidly changing in response to rising greenhouse 
gases, including dramatic sea ice loss. Sea ice is bright and reflects most sunlight that hits it, so when it melts 
more sunlight is absorbed at the surface, leading to more surface melting or warming. However, when viewed 
from satellites in space, it can be difficult to distinguish between bright clouds and the bright surface. Because 
clouds also reflect a large amount of incoming sunlight, they reduce the amount of sunlight that reaches the 
surface. Without clouds, far more sunlight would have been absorbed into the Arctic over the last two decades. 
The presence of clouds has also made it more difficult to observe how the amount of sunlight being absorbed 
is changing. Nevertheless, the Arctic has been evolving so quickly that even with the masking effect of clouds 
we can measure trends in absorbed sunlight using 20 years of satellite observations, a relatively short amount of 
time compared to most other climate changes.
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(Sledd & L’Ecuyer, 2019; Wu et al., 2020). Likewise, the decline in TOA albedo due to ice loss is not as large as 
it would be if clouds were not present (Pistone et al., 2014; Sledd & L’Ecuyer, 2021).

Changes in SW absorption from the late 1970s to the present have been documented at the surface using var-
ious satellite observations and reanalyses (Katlein et al., 2017; Letterly et al., 2018; Perovich et al., 2007; Shi 
et al., 2010). However, the accuracy of Arctic surface radiative fluxes in reanalyses is often questioned given the 
challenges of representing Arctic clouds and uncertainties in modeling SW fluxes at the surface (Christensen 
et  al.,  2016; Lindsay et  al.,  2014; Stephens et  al.,  2012; Tjernström et  al.,  2008). The launch of the Clouds 
and Earth's Radiant Energy System (CERES) instruments in 2000 expanded coverage of more direct TOA flux 
measurements to include polar regions (Loeb et al., 2018). These new observations have been used to quantify 
trends in SW radiation over the Arctic previously but with limited time periods (Hartmann & Ceppi, 2014; Kato 
et al., 2006). Further, while some of these studies briefly discuss the influence of cloud cover, none explicitly 
quantify the influence of clouds on the emergence of SW absorption trends and few consider the role of interan-
nual variability.

Here, we use two decades of CERES observations to document pan-Arctic solar absorption trends as well as those 
in individual ocean basins and land regions. The significance of these trends is established via statistical methods 
that estimate the expected number of years required to observe statistically significant trends relative to interannu-
al (natural) variability. We determine the impact of clouds by comparing solar absorption trends and their time to 
emergence derived separately from all-sky and clear-sky fluxes. The results highlight the rapid changes in energy 
input to the new Arctic and the role clouds play in shaping regional impacts.

2.  Materials and Methods
TOA energy balance is defined by the difference between incoming SW (SW ↓) radiation minus reflected SW 
(SW ↑) and emitted longwave radiation. The net SW (SW ↓ - SW ↑) energy that enters the Arctic system is, 
therefore, a fundamental driver of the Arctic climate in general and sea ice melt in particular (Choi et al., 2014). 
This study considers the total SW energy that accumulates in a given year during March through September, 
which accounts for 95% of incoming solar radiation in the Arctic (Cao et al., 2016). Monthly means of net SW for 
each grid box i, j are multiplied by the number of seconds in each month, tm and summed over March-September 
during a single year:

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖 =
9
∑

𝑚𝑚=3

(𝑆𝑆𝑆𝑆 ↓ − 𝑆𝑆𝑆𝑆 ↑)𝑖𝑖𝑖𝑖𝑖 × 𝑡𝑡𝑚𝑚.� (1)

For an individual grid box, 𝐴𝐴 SW𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖 has units of Jm−2. The total SWacc for a region, for example, all land or all 
ocean, is calculated by multiplying each grid box 𝐴𝐴 SW𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖 by its area, Ai,j, and summing over the region:

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 =
∑

𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖 × 𝐴𝐴𝑖𝑖𝑖𝑖𝑖 .� (2)

This calculation provides the total energy input (unit Joules) for the region.

In addition to being a fundamental driver of Arctic energy balance, SWacc is well-suited to trend and TTE anal-
yses in the Arctic because its time series is stationary once detrended, allowing several statistical methods to be 
applied. We calculate linear trends using a standard least-squares linear regression. However, we test the signif-
icance of these trends by taking into account the natural variability and autocorrelation present in geophysical 
variables, a method pioneered by Weatherhead et al. (1998) and Tiao et al. (1990). This method determines if a 
trend is greater than interannual variations as opposed to simply nonzero as with hypothesis testing. A trend is 
considered significant at a 95% confidence level if the magnitude is at least twice as large as its standard devia-
tion, 𝐴𝐴 𝐴𝐴𝜔̂𝜔 , estimated by

𝜎𝜎𝜔̂𝜔 ≈ 𝜎𝜎𝑁𝑁

[

12𝑑𝑑𝑑𝑑
𝑇𝑇 3

(1 + 𝜙𝜙)
(1 − 𝜙𝜙)

]1∕2

,� (3)

where σN is the standard deviation, T is the length of the time series, and dt is the time interval (dt = 1 for annual 
observations), and ϕ is the 1-lag autocorrelation. The uncertainty is calculated from the detrended anomalies, 
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which are modeled as an autoregressive order one (AR(1)) process. Further 
details can be found in Weatherhead et  al.  (1998) and Sledd and L’Ecuy-
er (2021). This method has been used to study global mean trends in radiation 
(Phojanamongkolkij et al., 2014) and time to emergence of cloud properties 
(Chepfer et al., 2018).

This analysis is repeated for individual regions of the Arctic, for which the 
total SWacc energy is calculated in Joules. We create synthetic time series by 
generating random noise with the same variance and autocorrelation of the 
detrended time series, and to this noise we add the linear trend determined 
from the original time series. The variance, autocorrelation, and trends are 
calculated from 2000–2020, and the synthetic time series are extended to 
2300, much longer than is actually required for all trends to emerge. Four 
hundred time series are generated for a given region to create synthetic en-
sembles that allow us to predict the mean amount time for trends to emerge 
(TTE). For trends that are not statistically significant in observations, TTE 
is meant to roughly guide expectations of how many additional years of ob-
servations would be needed to determine the significance of the trend, not to 
forecast the particular year a trend will emerge.

Accumulated SW is calculated using monthly TOA fluxes from CERES-
EBAF Ed 4.1 over 2000–2020 (Loeb et al., 2018) as presented in the Arctic 

Observation and Reanalysis Integrate System (ArORIS), a collection of data sets to facilitate studying the Arctic 
climate (Christensen et al., 2016). Data sets included in ArORIS have been regridded onto a common 2.5° x 2.5° 
grid. TOA fluxes in the CERES-EBAF data set are adjusted using an objective constrainment algorithm so as to 
be consistent with in situ ocean observations of global heating rates. We calculate SWacc using all-sky fluxes and 
total-region clear-sky fluxes. The latter are calculated in a manner to be consistent with climate models in terms 
of assumptions of a clear-sky column as opposed to only being calculated where the footprint is clear of clouds 
(Loeb et al., 2020). Uncertainty for net SW at the TOA under all-sky conditions is 3 Wm−2 for the Terra-only pe-
riod (March 2000–June 2002) and 2.5Wm−2 afterward, and under clear-sky conditions, uncertainty in upwelling 
SW is 6 Wm−2 for the Terra-only period and 5 Wm−2 after (Loeb et al., 2018).

Land and ocean are distinguished using the land fraction included in ArORIS based on the NCEP reanalysis land 
mask. NCEP land masks from ArORIS are also used to determine the individual land regions. Marginal seas are 
based on the Multisensor Analyzed Sea Ice Extent regions from the NSIDC interpolated to the ArORIS grid. 
These regions are mapped in Figure S1 in Supporting Information S1.

3.  Results
The 2000–2020 average SWacc is shown in Figure 1. Corresponding average sea ice and snow cover for the same 
period are shown in Figure S2 in Supporting Information S1 using data from Peng et al. (2013) and Hall and 
Riggs (2015). Without clouds (Figure 1a), regional differences in SWacc largely reflect the mean coverage of sea 
ice and snow (Figures S2a and b in Supporting Information S1). The greatest SWacc values, up to 5,600 MJm−2, 
occur over lower latitudes that receive more solar insolation and are consistently free of sea ice. SWacc decreases 
moving poleward in part due to the increasing solar zenith angle, but a sharp transition is visible in the North 
Atlantic and off the coast of Greenland where sea ice is typically present for at least part of the year. Over the 
interior Arctic Ocean (>𝐴𝐴 70𝑜𝑜 N), mean SWacc ranges from 2000 to 4900 MJm−2.

The lowest clear-sky SWacc values are found over the central Greenland ice sheet where the surface is glaciated 
and relatively bright throughout the year (Stroeve et al., 2013). Regions with high average snow cover on land 
during the melt season have low SWacc, including the Canadian Archipelago, western mountains in Norway, and 
northern coast of Russia. Overall, clear-sky SWacc is similar to SW absorption at the surface (Letterly et al., 2018).

Clouds substantially reduce the magnitude of mean SWacc and smooth its spatial heterogeneity (Figure 1b). Mean 
all-sky SWacc is below 4,600 MJm−2 over the entire Arctic, 82% the maximum clear-sky SWacc, and the range 
of mean all-sky SWacc values across the Arctic is about half that of clear-sky SWacc. While surfaces with high 

Figure 1.  Mean accumulated shortwave (SWacc) over 2000–2020 from 
CERES-EBAF, calculated with top of the atmosphere clear-sky (a) and all-sky 
(b) fluxes.
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albedos, for example, perennial sea ice in the central Arctic Ocean and the 
Greenland ice sheet, exhibit mean SWacc lower than the rest of the Arctic, the 
contrast is substantially reduced relative to clear skies. While the clear-sky 
SWacc illustrates how the Earth's surface interacts with solar energy in the 
absence of clouds; the all-sky SWacc actually governs the solar energy input 
into the Arctic climate system.

The area-weighted sum of the SWacc in Figure 1 gives the total solar ener-
gy input into the Arctic system. Given the key role energy imbalances have 
in driving Arctic climate change, there is considerable interest in whether 
SWacc has systematically changed and where such changes have occurred. 
Figure 2 shows anomalies of SWacc relative to the 2000–2020 mean for both 
all-sky (solid lines) and clear-sky (dashed lines) conditions over land (pink) 
and ocean (navy). While SWacc depends on area, ocean, and land cover near-
ly equal areas in the Arctic north of 60° (Figure S1 in Supporting Informa-
tion S1). Both clear-sky and all-sky SWacc trends are greater over ocean than 
over land (top rows of Table 1), confirming that reductions in sea ice are a 
stronger driver of surface SW absorption trends than snow cover on land 
(Letterly et al., 2018). Large positive clear-sky SWacc anomalies occur over 

the ocean in years with record-low September sea ice extent, for example, 2007, 2012, 2016, and 2020. All-sky 
SWacc anomalies are clearly muted in 2012 and 2016 but are comparable to clear-sky anomalies in 2007 since 
cloud cover was anomalously low during the 2007 melt season (Kay et al., 2008).

Over both land and ocean, clouds damp SWacc trends by more than a third and SWacc standard deviations by 
almost 20%. The signal-to-noise ratio (SNR), defined as the magnitude of the trend in SWacc divided by its stand-
ard deviation, is a measure of interannual variations; SNR quantifies the strength of secular trends relative to the 

Figure 2.  Anomalies of accumulated shortwave over ocean (navy) and land 
(pink) areas in the Arctic under all and clear-sky conditions.

All-sky Clear-sky

Region
Trend  

[103 PJ/yr]
Std dev 
[104 PJ] SNR [dec−1] Autocor TTE [yr]

Trend  
[103 PJ/yr]

Std dev 
[104 PJ] SNR [dec−1] Autocor

TTE 
[yr]

All Arctic+ 111 84.2 1.3 0.09 16 (4)* 193 108 1.8 0.06 12 (3)*

All Ocean+ 79.7 56.4 1.4 0.28 16 (4)* 136 65.5 1.9 0.05 11 (3)*

All Land+ 31.6 42.8 0.73 −0.21 19 (6)* 56.4 49.4 1.1 0.06 17 (5)*

Barents Sea+ 4.6 8.2 0.58 −0.11 24 (7) 17.0 12.1 1.40 0.22 16 (4)*

Kara Sea+ 9.96 7.82 1.27 0.22 17 (4)* 21.4 13.6 1.58 0.31 16 (3)*

Laptev Sea+ 8.32 8.15 1.02 −0.002 17 (5)* 15.3 12.8 1.20 −0.21 14 (4)*

East Siberian Sea+ 5.82 6.77 0.86 0.014 20 (5)* 10.4 10.5 0.99 −0.13 17 (5)*

Chukchi Sea+ 6.09 8.18 0.74 0.01 22 (6)* 11.4 8.08 1.42 −0.12 13 (4)*

Beaufort Sea+ 9.16 13.70 0.66 0.24 26 (6) 14.0 16.6 0.84 −0.05 19 (6)*

Greenland Sea+ 3.12 8.46 0.37 −0.16 31 (9) 8.95 8.40 1.06 0.06 17 (5)*

Central Arctic Ocean 15.10 16.84 0.90 0.23 22 (5) 17.4 20.5 0.85 0.15 22 (5)*

Europe+ −0.80 17.36 −0.05 −0.53 104 (33) 2.34 10.8 0.21 0.03 52 (13)

N.America+ 8.26 19.05 0.43 −0.25 27 (8) 21.6 24.4 0.88 −0.15 17 (5)*

Greenland+ 8.29 11.25 0.74 −0.13 20 (6)* 7.74 10.7 0.72 −0.30 18 (6)*

Siberia+ 15.16 24.91 0.61 −0.23 22 (7)* 20.2 23.1 0.88 0.04 20 (5)*

Eurasia+ 14.07 36.80 0.38 −0.44 26 (8) 21.8 29.8 0.73 0.08 23 (6)

Note. The TTE is the mean number of years needed for a trend emerge from 400 synthetic time series based on the trend, standard deviation, and autocorrelations. The 
standard deviation of TTE from the synthetic ensemble is given in parentheses. Trends that have emerged in the current observational record are noted with *. Regions 
are noted with a + if all-sky and clear-sky mean TTE are statistically different using a student’s t-test with p𝐴𝐴 𝐴 0.05.

Table 1 
Characteristics of All-Sky and Clear-Sky SWacc Radiation Over the Arctic Domains Defined in Figure S1 in Supporting Information S1
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underlying natural variability present in all climate records. Clouds decrease the SNR over both land and ocean 
since they reduce trends more than interannual variations. Since trends are more difficult to detect from noisier 
time series (Weatherhead et al., 1998), clouds effectively reduce the detectability of SWacc trends. To quantify 
this effect, we estimate the expected number of years needed to detect a trend with 95% confidence, referred 
to as the time to emergence (TTE). Over the ocean, clouds increase the TTE by more than a third from 11 ± 3 
to 16 ± 4 years. Clouds have a smaller impact on the TTE of SWacc trends over land, increasing the TTE from 
17 ± 5 to 19 ± 6 years. Although all-sky SWacc SNR is substantially smaller than clear-sky SNR over land, auto-
correlations impede trend detection in clear-skies. Anomalies in clear-sky SWacc tend to persist in time over land 
resembling trends, and a longer record of observations is needed to discern such propagating natural variations 
from secular trends in the data set. The opposite is true in all-sky SWacc over land where negative autocorrelations 
are observed: anomalies are more likely to be followed by an anomaly of the opposite sign, leading to the earlier 
emergence of a trend, all else being equal. These competing behaviors close the gap between clear-sky and all-sky 
TTE over land, although the physical reasons for these autocorrelations are not entirely clear. Furthermore, the 
sample size for measuring 1-lag autocorrelation here is relatively small and the corresponding uncertainties are 
not insignificant, ±0.44.

Taken together, the TTE of trends in total all-sky Arctic SWacc is 16 years. This is a significant result: the sea ice 
and snow cover losses shown in Figures S2c and S2d in Supporting Information S1 have now had a discernible 
impact on the amount of SW energy absorbed in the Arctic that emerged from natural variability in the last two 
decades of the CERES observational record. As a result, the current 21-year observational record is now long 
enough to provide a robust test of predicted trends in this key driver of Arctic climate change in climate models 
despite conventional wisdom that a minimum of 30 years is needed to determine forced climate trends.

While the total accumulated SW absorption over the Arctic provides a useful measure of how ice and snow cover 
losses have influenced the energy balance of the Arctic system as a whole, changes in absorbed solar radiation 
have local impacts enhancing regional melting and increasing SST in locations of sea ice loss, for example, 
Timmermans et al. (2018); Long and Perrie (2017). Recent declines in sea ice and snow cover exhibit distinct 
spatial patterns (Figures S2c and S2d in Supporting Information S1) that induce strong regional variations in the 
resulting SWacc responses (Figure 3).

The largest trends under clear-sky conditions correspond to areas with the greatest sea ice loss over 2000–2020 
(Figure S2c in Supporting Information S1), for example the Barents, Kara, and Beaufort Seas. In these marginal 
seas, clear-sky SWacc trends are on the order of 20–30 MJm−2/yr, but reach a maximum of almost 40 MJm−2/yr 
in the Kara Sea. Consistent with Figure 2, trends are generally lower over land masses, with the greatest SWacc 
trends observed over Northern Canada, approximately 20 MJm−2/yr without clouds. The few areas with negative 
SWacc trends in Figure 3 correspond to regions that have increasing sea ice (Labrador Sea) or snow cover (north-
east and northwest coasts of Russia) (Figure S2c in Supporting Information S1). Regions without sea ice or snow 
cover during March through September, including much of the Atlantic Ocean, have negligible trends.

Clouds decrease the magnitude of SWacc trends by roughly half over both land and ocean (Figure 3g). Addition-
ally, clouds reduce the area with statistically significant trends to half that in clear skies. Clouds lower the trends 
around the Barents and Kara Seas by upwards of 20 MJm−2/year. Clouds also weaken the magnitude of the SWacc 
trend in the Labrador Sea, west of Greenland, where clear-sky SWacc is decreasing because sea ice is slightly 
increasing.

Large apparent trends over marginal seas do not, however, automatically guarantee rapid identification since nat-
ural variability also tends to be large. Over regions with seasonal sea ice cover, SWacc standard deviations reach 
upwards of 300 MJm−2, approximately twice as large as the variability over most land surfaces. The exception to 
this ocean-land contrast occurs over the Canadian Archipelago, that includes both snow and sea ice. Since regions 
with the largest trends also experience the largest variability, the SNR is critical for establishing the significance 
of trends relative to natural variations. High SNR provides a good indication of where trends are statistically 
significant with 95% confidence, indicated with stippling in Figures 3a–3f.

In spite of their high year to year variability, the marginal seas exhibit large SNR under clear-sky conditions. 
Clouds not only reduce SWacc over the ocean, but also exert a strong influence on its variability, especially on 
regional scales. In fact, while clouds reduce variability overall in Figure 2, two distinct regimes emerge in Fig-
ure 3h: clouds decrease variability over areas with seasonal or perennial sea ice but increase variability over areas 



Geophysical Research Letters

SLEDD AND L’ECUYER

10.1029/2021GL095813

6 of 9

that typically remain ice free, namely the North Atlantic. Over ocean regions that experience seasonal ice loss, 
clouds reduce the variability of SWacc by roughly half, upwards of 150 MJm−2 in the Barents Sea and Canadian 
Archipelago. When present, clouds can increase the albedo over open ocean, but they also increase SWacc varia-
bility because they are transient while open ocean has low and consistent albedo by comparison. Clouds therefore 
increase the standard deviation of SWacc by about +75 MJm−2 relative to clear skies over open ocean. On the 
other hand, clouds have the opposite effect over areas with changing sea ice. While clouds are not always present, 
they persist in time for sufficiently long periods to dampen the albedo contrast between sea ice and open ocean, 
in turn reducing SWacc variability.

As a result of these spatial variations, integrating SWacc over all land and ocean areas conceals large regional 
differences in SNR and the TTE of trends in absorbed SW radiation that may have important local implications. 
Across individual marginal seas, for example, SWacc trends vary by over a factor of two without clouds and a 
factor of four with clouds (Table 1). Over most marginal seas, all-sky trends are roughly half of their clear-sky 
counterparts. The only exception is the Barents Sea where the all-sky trend is about a quarter of that in clear-skies 
trend because of persistent cloud cover (Liu et al., 2012). The impact of clouds is less consistent over distinct land 
regions. SWacc trends over North America, Siberia, and Eurasia are diminished by clouds, but the SWacc trend is 
slightly increased by clouds over Greenland where cloud cover and snow cover have decreased in concert along 
the northeast edge of the ice sheet (Hofer et al., 2017).

Over much of the Arctic Ocean, the primary impact of clouds on SWacc is to lower the SNR and, in turn, increase 
the time needed to detect trends. Clear-sky SWacc trends have emerged in the CERES-EBAF record over all 

Figure 3.  Accumulated shortwave trends (a and c), standard deviations (b and e), and signal to noise ratios (SNR) (c and f) calculated with all-sky (a–c) and clear-
sky (d–f) fluxes over 2000–2020. Differences between all-sky and clear-sky conditions are shown in (g–i). SNR is calculated by dividing the trend by the standard 
deviation. Stippling represents grid boxes where trends have emerged in the observational record with 95% confidence.
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marginal seas (Table 1), but clouds have masked those trends from being statistically significant for half of the 
marginal seas (Barents, Beaufort, Greenland, and Central Arctic). Trends in the Laptev, Kara, and East Siberian 
Seas are statistically significant with 17–20 (±4–5) years of observations, a relatively short time period, and 
the SWacc in the Chukchi Sea is also statistically significant with an average TTE of 22 (±6) years. Clouds have 
increased the TTE over these seas by 1–9 years. However, in the Barents Sea where sea ice trends are large, 
ubiquitous cloud cover reduces the local SWacc trends much more than the interannual variability, decreasing the 
SNR (Figures 3g–3i) and substantially increasing the TTE (Table 1). Based on the measured trends and corre-
sponding variability, clouds are also expected to delay the time needed to detect trends in the Beaufort Sea and 
Greenland Sea by 7 and 14 years, respectively, enough to mask trends that would otherwise have been detectable 
in the current satellite record. Clouds have little effect on the estimated time required to detect SWacc trends in the 
central Arctic Ocean where perennial sea ice persists (Figure 3), although the clear-sky SWacc trend is statistically 
significant under observed clear-sky conditions but not all-sky.

There are also two distinct regions of cloud impacts on absorbed solar radiation over land. Clouds impact North 
America in a similar manner as over the marginal seas, reducing SWacc trend, SNR, and increasing the TTE. 
Based on Figure 3g, clouds decrease SWacc trends over continental North America with less impact on their var-
iability. From June through September most land surfaces contribute little to the TOA albedo (Sledd & L’Ecuy-
er, 2019), so the transient nature of clouds can again provide intermittent contrast to the relatively dark surface 
albedo. While the SWacc trend has emerged over North America, clouds have delayed its detectability beyond the 
current CERES-EBAF record. This is true along the coast of Eurasia as well, but SWacc trends have not emerged 
over Europe, Siberia, or Eurasia.

4.  Discussion and Conclusions
The 21 year record from CERES is now long enough to have definitively measured recent increases in total 
all-sky absorbed SW radiation in the Arctic. While clouds generally reduce the magnitude of SWacc trends and 
increase the number of years required to measure a trend relative to a clear-sky scenario, sea ice and snow cover 
have declined sufficiently that their impacts on absorbed solar radiation have emerged in the two decade obser-
vational period, in both clear-sky and all-sky conditions. Although 21 years is a short observational period for 
trend detection, previous work has found that sea ice has already declined so much in the satellite era that it is 
significantly different than preindustrial conditions during this time period (Landrum & Holland, 2020). How-
ever, even though sea ice largely determines the pan-arctic surface albedo, it was not obvious that such changes 
directly manifest themselves in the TOA energy budget due to the substantial influences of intervening clouds. 
This work demonstrates that the solar energy input into the Arctic has definitively increased as a result of these 
sea ice losses over the modern satellite era.

Clouds have, however, masked SWacc trends from emerging over half of the marginal seas. These findings gen-
erally agree with previous work in terms of where the greatest SW absorption trends have been observed. For 
example, significant trends have been consistently observed in the Pacific sector of the Arctic Ocean, particularly 
in the Beaufort Sea (Hartmann & Ceppi, 2014; Perovich et al., 2007), although the magnitude of those trends is 
not always consistent (Wu et al., 2020). Our work shows greater trends in the Kara and Laptev Seas compared to 
others, for example, Perovich et al. (2007), although they agree with spatial patterns during the spring and early 
summer when there is significant incoming SW (Letterly et al., 2018).

While earlier work found clouds had a limited impact on SNR when evaluated over the entire Arctic, we expose 
a more nuanced picture. As in Sledd and L’Ecuyer (2021), clouds reduce the magnitude of trends even on region-
al scales, but cloud influences on SWacc interannual variability fall into two distinct regimes. Clouds decrease 
variability where the surface changes during the melt season, such as the marginal ice zone, but they increase 
variability wherever the surface has a consistent albedo, such as open ocean in North Atlantic. This suggests 
pan-arctic studies may inadvertently miss important regional differences that are critical for defining local surface 
and temperature responses.

Because clouds account for the majority of the TOA albedo in the Arctic (Sledd & L’Ecuyer, 2019), changes in 
cloud cover impact SW absorption, (e.g., Alkama et al., 2020). Previous studies using passive sensors have found 
small (Comiso & Hall, 2014; Letterly et al., 2018) or no (Choi et al., 2020) cloud cover trends in summer over 
the Arctic. However, passive sensors underestimate cloud fraction over bright, cold surfaces compared to active 
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sensors (Chan & Comiso, 2013), leading to biases in trend estimates as sea ice declines (Liu et al., 2010). Using 
active sensors, no statistically significant trend in Arctic cloud cover has been determined (Kay et al., 2016), pos-
sibly owing to the relatively short length of this satellite record (2006-present). Ultimately, longer data records are 
needed to determine how clouds are changing in the Arctic and the consequences for SW absorption.

Of the regions where trends have not yet emerged, many are predicted to emerge in the next decade. The continu-
ity of satellite-based radiation budget measurements over the Arctic will be critical for determining if and when 
such trends emerge and to continue monitoring the impacts of climate change in the Arctic.

Data Availability Statement
ArORIS data are available at the CloudSat Data Processing Center: http://www.cloudsat.cira.colostate.edu/com-
munity-products/arctic-observation-and-reanalysis-integrated-system. Original CERES-EBAF data are available 
at https://ceres.larc.nasa.gov/data/. The NSIDC provides data for sea ice (https://doi.org/10.7265/N59P2ZTG) 
and snow cover (https://doi.org/10.5067/MODIS/MOD10CM.006). Code used for the time to emergence analysis 
in this study is available at Zenodo via https://doi.org/10.5281/zenodo.5644382.
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