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ABSTRACT: TheArctic is rapidly changing, with increasingly dramatic sea ice loss and surface warming in recent decades.

Shortwave radiation plays a key role in Arctic warming during summer months, and absorbed shortwave radiation has been

increasing largely because of greater sea ice loss. Clouds can influence this ice–albedo feedback by modulating the amount

of shortwave radiation incident on the Arctic Ocean. In turn, clouds impact the amount of time that must elapse before

forced trends in Arctic shortwave absorption emerge from internal variability. This study determines whether the forced

climate response of absorbed shortwave radiation in the Arctic has emerged in the modern satellite record and global

climate models. From 18 years of satellite observations fromCERES-EBAF, we find that recent declines in sea ice are large

enough to produce a statistically significant trend (1.7 3 106 PJ or 3.9% per decade) in observed clear-sky absorbed

shortwave radiation. However, clouds preclude any forced trends in all-sky absorption from emerging within the existing

satellite record. Across 18models from phase 6 of theCoupledModel Intercomparison Project (CMIP6), the predicted time

to emergence of absorbed shortwave radiation trends varies from 8 to 39 and from 8 to 35 years for all-sky and clear-sky

conditions, respectively, across two future scenarios. Furthermore, most models fail to reproduce the observed cloud de-

laying effect because of differences in internal variability. Contrary to observations, one-third of models suggest that clouds

may reduce the time to emergence of absorbed shortwave trends relative to clear skies, an artifact that may be the result of

inaccurate representations of cloud feedbacks.
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1. Introduction

The Arctic is one of the most rapidly changing regions on

Earth. Sea ice loss has been observed in all months since the

beginning of the satellite era (Onarheim et al. 2018) with

many regions transitioning from perennial to seasonal ice

cover in recent years (Comiso 2002). The remaining sea ice

is younger and thinner (Stroeve et al. 2012; Lindsay and

Schweiger 2015) as its decline accelerates (Comiso et al.

2008). As sea ice has decreased, Arctic surface air tempera-

tures have increased by almost 28C over the last century (Box

et al. 2019). This warming is more than 2 times as large as the

global average, a phenomenon known as Arctic amplification

(AA) (Serreze et al. 2009). AA is driven by various feedback

mechanisms that manifest themselves through changes in the

Arctic energy budget (Serreze and Barry 2011). One such

mechanism is the ice-albedo feedback, in which reduced sea

ice lowers the surface albedo and allows more shortwave

(SW) radiation to be absorbed, further melting additional

sea ice (Curry et al. 1995) both by warming sea surface

temperatures (Steele et al. 2008) and increasing heat release

in autumn and winter that delays sea ice growth (Tietsche

et al. 2011).

Some of the most dramatic changes in the Arctic have been

observed over the last two decades. A marked transition in the

annual cycle of sea ice cover has altered the behavior of surface–

atmosphere heat and moisture exchanges, declared the ‘‘new

Arctic’’ by some (Carmack et al. 2015). The rapid changes in

Arctic climate since 2000, coupled with the golden age of

satellite observations in polar regions, motivate a deeper in-

vestigation into how seasonal trends in sea ice cover and

thickness may be influencing solar absorption in the Arctic

Ocean. Figure 1 shows deseasonalized anomalies of monthly

Northern Hemisphere sea ice extent from the National Snow

and Ice Data Center (NSIDC) and surface albedo and plan-

etary albedo calculated using clear-sky and all-sky SW fluxes,

respectively, from Clouds and Earth’s Radiant Energy

System Energy Balance and Filled (CERES-EBAF) over

the area above 608N from 2001 to 2017. Reliable top-of-

atmosphere (TOA) fluxes have only been available in the

Arctic since the launch of CERES, limiting time series anal-

ysis of Arctic energy changes using observations. However,

even over this relatively short time period there are significant

negative trends in sea ice extent and surface albedo anoma-

lies. The time series of surface albedo anomalies closely fol-

lows that of sea ice extent, as is expected given the high

albedo of sea ice and its marked transition to low albedo

ocean. On the other hand, anomalies in the planetary albedo

derived from TOA fluxes are, to some degree, disconnected

from sea ice extent. For example, September 2012 had the

lowest sea ice extent recorded during the satellite era, and the

reduced sea ice in turn clearly lowered the surface albedo.

Viewed from space, however, the September 2012 decline in

TOA albedo was less than half that at the surface. This dis-

connection is largely due to clouds in the intervening atmo-

sphere that are observed to modulate the influence of surface
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albedo on the TOA albedo by as much as a factor of 2 (Sledd

and L’Ecuyer 2019).

Clouds are an important control on the Arctic energy

budget. SW radiation, in particular, is strongly modulated by

cloud cover and cloud microphysical properties (e.g., Sedlar

et al. 2011). In fact, the atmosphere contributes far more to

the planetary albedo than the surface both globally (Donohoe

and Battisti 2011) and in the Arctic (Qu and Hall 2005) where

it accounts for at least 75% of the TOA albedo. Clouds are a

determining factor in how much SW radiation is reflected

back to space compared to how much actually reaches the

surface (Stephens et al. 2015). While reduced sea ice has been

linked to lower surface and planetary albedo (Pistone et al.

2014), clouds reduce the impact of sea ice loss on the plane-

tary albedo in the Arctic (Gorodetskaya et al. 2008). This

damping effect of clouds reduces the sensitivity of the plan-

etary albedo to changes in sea ice and snow cover by half

relative to the surface albedo (Sledd and L’Ecuyer 2019). In

turn, the masking effect of clouds explains why they reduce

the strength of the ice-albedo feedback (Soden et al. 2008;

Hwang et al. 2018) and why, unlike sea ice extent and surface

albedo, it is more difficult to discern a trend in the TOA al-

bedo in Fig. 1. This suggests that a longer data record may

be required to discern the forced climate trends in all-sky

absorbed SW radiation.

Because clouds strongly influence the planetary albedo

and, therefore, how much SW radiation reaches the surface,

the future of clouds is critical to the future of the Arctic cli-

mate (Kay et al. 2016). Observational studies have found

some evidence that increased cloud cover may offset de-

creases in surface albedo in the Arctic (Kato et al. 2006;

Katlein et al. 2017), although trends in cloud cover are small

and seasonally dependent (Wang et al. 2012; Kay and

Gettelman 2009). These studies have also relied on satellites

with passive sensors that struggle to identify cold bright

clouds over cold bright surfaces in the Arctic. While data

from active sensors (e.g., radar and lidar aboardCloudSat and

CALIPSO) have greatly improved our understanding of

cloud processes in the Arctic (Kay and L’Ecuyer 2013;

Morrison et al. 2018) they have only been in orbit since 2006

and suffer from limited nadir sampling.

Global climate models (GCMs), on the other hand, allow

the bulk effects of various forcing and feedback mechanisms

to be analyzed with a plethora of prognostic and diagnostic

variables that span for far longer time periods than obser-

vations. However, studying the future of polar climate using

GCMs presents its own challenges due to ongoing difficulties

accurately representing modern-day cloud processes and

feedbacks (Li et al. 2013; Dolinar et al. 2015). It is not just

the amount of cloud cover that is important to simulate

correctly, but also the phase and water content of clouds

that govern their influence on the Arctic radiation balance

(Shupe and Intrieri 2004). Differences in cloud parameteri-

zations have thus led to biases, relative to satellite and ground

observations, in the SWenergy budget in GCMs (Gorodetskaya

et al. 2006). While progress has been made studying cloud

feedbacks in the Arctic (e.g., Morrison et al. 2019), the

challenge of realistically representing clouds persists across

generations of GCMs (Vignesh et al. 2020), casting uncer-

tainty on projected rates of AA and accompanying Arctic sea

ice loss.

Understanding recent changes in the Arctic is key to cor-

rectly assessing how it may change in the future. This paper

utilizes the growing record of satellite-based Earth radiation

budget observations and a statistical framework for assessing

the time to emergence (TTE) of forced climate trends in the

Arctic. We combine these tools to establish whether the re-

cent observational record is long enough to distinguish forced

changes in absorbed SW radiation in the Arctic from inter-

annual variability with statistical confidence and to under-

stand how clouds impact our ability to discern such trends.

We further examine the character of Arctic absorbed SW

radiation trends in modern climate models. Specifically, we

address the following questions: 1) how do clouds impact

FIG. 1. Monthly deseasonalized anomalies for Arctic surface (SFC) and top-of-atmosphere

(TOA) albedos and Northern Hemisphere (NH) sea ice extent (SIE) from 2001 to 2017.

Albedos are calculated using fluxes from CERES-EBAF Ed 4.1, and SIE estimates are from

the NSIDC. Dashed vertical lines mark September 2007 and 2012, the lowest SIE on record.

The surface albedo anomalies closely track the SIE anomalies, and both exhibit clear negative

trends over this time period. TOA albedo anomalies, on the other hand, are often decoupled

from the surface, and the trend is much more difficult to discern.
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trends in absorbed SW radiation and their TTE? 2) how do

predicted SW trends in GCMs compare to observations? and

3) what aspects of modeled Arctic climate variability drive

differences in TTE relative to observations? We estimate

the TTE of absorbed SW radiation trends from satellite

observations and GCMs from phase 6 of the Coupled Model

Intercomparison Project (CMIP6) over the twenty-first cen-

tury. Amathematical understanding of the factors that influence

SW trend detection is presented and then related to the physical

changes occurring in today’s Arctic.

2. Methods

a. Datasets

1) OBSERVATIONS

Both observational datasets used in this study are extracted

from the Arctic Observations and Reanalysis Integrated

System (ArORIS), a collection of datasets created to support

Arctic climate research (Christensen et al. 2016). All datasets

in ArORIS are regridded to a uniform 2.58 3 2.58grid and av-

eraged to monthly time scales.

We use radiative fluxes from the CERES-EBAF edition 4.1

on board the Terra andAquaNASA satellites. TOA fluxes in

the CERES-EBAF dataset are adjusted within their ranges of

uncertainty to be consistent with the global heating rate from

in situ ocean observations (Loeb et al. 2018; Kato et al. 2018).

We use all-sky fluxes at the TOA and total-region clear-sky

fluxes at the surface. Previously, clear-sky fluxes from CERES

only represented fluxes in areas that were free of clouds at the

time of observation. Total-region clear-sky fluxes are intended

to facilitate direct comparisons with models that typically de-

termine clear-sky fluxes over a grid box by ignoring clouds in the

atmospheric column in the radiative transfer calculation. To that

end, CERES total-region clear-sky fluxes include an adjustment

factor given by the difference of calculating clear-sky fluxes for

cloud-free regions and calculating themwith a radiative transfer

model while ignoring clouds in the atmospheric column (Loeb

et al. 2020). Uncertainty for net SW flux at the TOA under all-

sky conditions is 2.5Wm22 (Loeb et al. 2018). At the surface

under clear-sky conditions in the Arctic, uncertainty in SW

fluxes is 14 and 16Wm22 for downwelling and upwelling

radiation, respectively (Kato et al. 2018).

Sea ice concentrations (SIC) and extent are derived from

the NSIDC Equal-Area Scalable Earth grid (EASE) weekly

product (Brodzik and Armstrong 2013). Their long-term record of

SIC dating back to 1978 is estimated using brightness temperature

from theNimbus-7ScanningMultichannelMicrowaveRadiometer

(SMMR), the Defense Meteorological Satellite Program (DMSP)

F8, F11, and F13 Special Sensor Microwave/Imagers (SSM/Is),

and theDMSP F17 Special SensorMicrowave Imager/Sounder

(SSMIS). We use SIC to calculate sea ice area (SIA) by multi-

plying the SIC in each grid box by its area and summing over the

Arctic, defined as the area north of the Arctic Circle (66.58N).

2) CMIP6

To investigate the changes in SW absorption beyond our

observational record, we analyze the output of 18 models

participating in CMIP6 (Eyring et al. 2016), listed in Table 1.

We use the historical forcing run, which covers the years

from 1850 to 2014, and two shared societal pathways (SSPs)

from the ScenarioMIP deck. We compare SSP2 (‘‘middle of

the road’’ scenarios with moderate population and eco-

nomic growth) with an end-of-century radiative forcing of

4.5Wm22 (SSP245) and SSP5 (‘‘business as usual’’ scenar-

ios with strong economic growth relying on fossil fuels) with

radiative forcing of 8.5Wm22 (SSP585) (O’Neill et al.

2016). These scenarios include years 2015–2100. The first

ensemble member (r1i1p1f1) is used from each model, and

the native resolution of each model is kept before each

variable is averaged or summed over the Arctic. Variables

that are averaged (e.g., total cloud fraction, surface air

temperature) are weighted by grid box area, while most

other variables are cumulative (e.g., sea ice area) and are

summed over the Arctic. For grid boxes that contain the

Arctic Circle, the area is recalculated such that only the area

north of 66.58N is included in the sum or average.

b. Statistical methods

1) TIME TO EMERGENCE

This analysis uses the detection of statistically significant

forced responses in time series that include natural variability

to query the existence of observed SW absorption trends in the

Arctic and evaluate their representation in modern GCMs.

While hypothesis testing can determine when a trend is dif-

ferent from zero for a chosen confidence level, it does not take

into account variance or autocorrelation that are common in

geophysical time series. In the 1990s, Tiao et al. (1990) and

Weatherhead et al. (1998) published methods for trend de-

tection in geophysical applications that take these issues into

account. Their methods of trend detection first assume the time

series of interest can be modeled as the sum of a mean state

with a linear trend v and noise. The noise is assumed to be an

autoregressive order-one [AR(1)] process with lag-1 autocor-

relation f and variance s2. The common variance (of the

random fluctuations about zero in the noise that is assumed to

be a white noise process) s2
e is related to the variance of the

noise by

s2
e 5Variance(N

t
)5s2

N(12f2) . (1)

The variance and autocorrelation are calculated from the

detrended time series of anomalies.

As in Weatherhead et al. (1998) and Chepfer et al. (2018),

we consider a trend to have emerged at the 95% confidence

level when it is at least twice as large as the standard deviation

of the measured trend: jv̂/sv̂j. 2. The standard deviation of

the trend sv̂ can be approximated as

s
v̂
’s

N

�
12dt

T3

(11f)

(12f)

�1/2
, (2)

where T is the length of the time series and dt is the time in-

terval—in our case dt 5 1 for our annual observations dis-

cussed more below. This equation is adapted for annual time
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series, based on Lian (2017), from its original form using

monthly time series (dt 5 1/12).

The time to emergence (TTE) is defined as how many years

of observations are needed for a measured trend to be statis-

tically significant. For a given time series, a trend is calculated

and tested for significance over intervals of increasing length,

for example, [0, dt], [0, 2dt], [0, 3dt], . . . , [0, T]. The confidence

for each time interval is calculated from Eq. (2); the trend has

emerged when it remains greater than two. This process is

shown in Fig. 2 for an ensemble of synthetic time series, dis-

cussed shortly.

Chepfer et al. (2018) demonstrate that such an analysis

provides a statistical basis for determining how long it takes

forced climate changes to emerge from interannual variability

in observational data records. Similar techniques were used to

project trend detection of broadband and spectral albedos

(Feldman et al. 2011) and to inform instrument require-

ments for future climate monitoring satellite missions (Wielicki

et al. 2013). When applied to global mean TOA irradiances,

Phojanamongkolkij et al. (2014) found no discernible trend

over 2000–11 in reflected SW or emitted longwave radiation

from CERES.

2) SYNTHETIC TIME SERIES

As in Chepfer et al. (2018) we combine TTE with syn-

thetic time series to estimate the time needed for trends to

be measurably greater than the climate variability. Synthetic

time series are created that maintain the statistical behavior

(autocorrelation and variance) of the original time series.

To calculate these synthetic time series, we again assume

the data can be represented by the sum of a linear trend and

noise. We take the variance calculated from Eq. (1) and

generate a series of random noise with zero mean from it.

On top of this noise, we can add a linear trend, illustrated in

Fig. 2a. Synthetic time series are continued to 150 years,

which is long enough for trends from all CMIP6 models to

emerge under both SSP245 and SSP585. Synthetic ensem-

bles are composed of 300 individual time series. This process

can be applied to models as well as observations to create

ensembles of time series. While large ensembles from GCMs

are an incredibly powerful tool for determining shifts in cli-

mate beyond the inherent internal variability (e.g., Onarheim

and Årthun 2017), the authors know of no way to create a

true large ensemble from observations as can be done with

GCMs. Using synthetic time series also allows us to ex-

amine GCMs that do not have large ensembles associated

with them, expanding the number of models available for

analysis.

3) ACCUMULATED ABSORBED SHORTWAVE

RADIATION

The strong seasonality of the Arctic poses unique chal-

lenges for time series analysis. As mentioned earlier, this

trend detection method is predicated on the assumption

TABLE 1. Models included from phase 6 of the Coupled Model Intercomparison Project. Most model expansions can be found online

(https://www.ametsoc.org/PubsAcronymsList).

Model Modeling center ATM grid (lon/lat) OCN grid (lon/lat)

ACCESS-CM2 Commonwealth Scientific and Industrial

Research Organisation

192 3 144 360 3 300

ACCESS-ESM1.5 Commonwealth Scientific and Industrial

Research Organisation

192 3 145 360 3 300

BCC-CSM2-MR Beijing Climate Center 320 3 160 360 3 232

CESM2 National Center for Atmospheric

Research

288 3 192 320 3 384

CESM2(WACCM) National Center for Atmospheric

Research

288 3 192 320 3 384

CanESM5 Canadian Centre for Climate Modelling

and Analysis

128 3 64 361 3 290

EC-Earth3 EC-Earth Consortium 512 3 256 362 3 292

EC-Earth3-Veg EC-Earth Consortium 512 3 256 362 3 292

GFDL-ESM4 NOAA Geophysical Fluid Dynamics

Laboratory

360 3 180 720 3 576

INM-CM4.8 Institute of Numerical Mathematics 180 3 120 360 3 318

INM-CM5.0 Institute of Numerical Mathematics 180 3 120 720 3 720

IPSL-CM6A-LR Institut Pierre-Simon Laplace 144 3 143 362 3 332

MIROC6 Japan Agency for Marine-Earth Science

and Technology

256 3 128 360 3 256

MPI-ESM1.2-LR Max Planck Institute for Meteorology 192 3 96 256 3 220

MPI-ESM1.2-HR Max Planck Institute for Meteorology 384 3 192 802 3 404

MRI-ESM2 Meteorological Research Institute 320 3 160 128 3 64

NESM3 Nanjing University of Information

Science and Technology

192 3 96 362 3 292

NorESM2-LM Norwegian Climate Center 144 3 96 360 3 384
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that the noise can be represented by an AR(1) process that

is stationary. Many monthly time series in the Arctic do not

meet these requirements, including monthly sea ice, albedo,

and absorbed shortwave, as the variance and/or trends differ

significantly throughout the seasons. We therefore calculate

the net SW energy absorbed over the melt season, March

through September. These months account for 95% of in-

coming SW radiation in the Arctic (Cao et al. 2016). The

accumulated SW, SWacc, is found by calculating the net SW

flux (SWY 2 SW[) absorbed at each grid box multiplied by

the area of its grid box, converting it to a measure of power.

Further multiplying by the duration (in seconds) of each

month yields an accumulated energy. This average net SW

energy is then summed over the Arctic, again defined as the

area north of the Arctic Circle, and summed over the melt

season:

SW
acc

5 �
9

m53
�
i, j
(SWY 2 SW[)

i,j
3A

i,j
3 t

m
, (3)

whereAi,j is the area of grid box i, j and tm is the seconds in each

month m.

Accumulated SW is a fundamental driver of Arctic climate

variability. It is the net amount of SW energy input into the

Arctic system that can go to melting sea ice and snow or

heating the surface. Accumulated SW also behaves as a sta-

tionary time series, once detrended, unlike many other vari-

ables in the Arctic. We calculate SWacc at the TOA with all-

sky fluxes (TOAall) and at the surface with clear-sky fluxes

(SFCclr). Using these two boundaries and conditions allows us

to quantify the difference clouds make at the TOA as com-

pared to the surface if there were no clouds. Anomalies of

SWacc are shown in Fig. 3 for CMIP6 and observations. As seen

FIG. 2. Trend detection using synthetic time series of surface clear-sky (SFCclr) accumulated shortwave (SWacc)

over the Arctic fromCERES-EBAF. (a) Synthetic time series (gray) are generated based on the variance and lag-1

autocorrelation of the detrended CERES observations, shown in black. A linear trend based on the CERES record

is added to time series to generate the ensemble shown in light blue. A single realization from the resulting en-

semble is highlighted in red. (b) For each synthetic time series, the linear trend is calculated from subsets of time

periods increasing in length, e.g., [0, 1], [0, 2], . . . , [0, T], where T is the full length of the time series. Trends

calculated over the red time series in (a) are again highlighted. Initially trends can vary greatly, oscillating between

positive and negative values before leveling off around the ‘‘true’’ trend, given by the solid black line. (c) When the

trend is at least 2 times as large as the uncertainty, shown as the solid black line at jv̂/sv̂j5 2 for the 95% confidence

level, it is deemed to have ‘‘emerged.’’ (d) Theoretical values of time to emergence (TTE) are shownwith ranges of

variability sN, lag-1 autocorrelation f, and trend found in models and observations.

1 FEBRUARY 2021 S LEDD AND L ’ ECUYER 935

Brought to you by UNIVERSITY OF WISCONSIN MADISON | Unauthenticated | Downloaded 04/21/21 04:58 PM UTC



with surface and TOA albedo anomalies (Fig. 1) clear-sky

SWacc increases faster than all-sky SWacc at the TOA over the

twenty-first century in all models.

Recall that the trend detection method assumes that the

detrended anomalies can be represented by an AR(1) process.

Increasing the time step (e.g., summing over the melt season) is

intended to help meet this requirement, as mentioned in Gero

and Turner (2011). In observations the noise has no significant

autocorrelations at the 95% confidence level, which would

suggest a white noise process, but this may be due to the short

record length requiring large autocorrelations ($0.47) to count

as significant, shown in Fig. 4. In the majority of CMIP6 models,

SWacc noise appears as white or red noise over 1900–99, for

exampleMRI-ESM2 in Fig. 4. According to Phojanamongkolkij

et al. (2014), the method of Weatherhead et al. (1998) is

more accurate for white or red noise scenarios when compared

with other more general methods (e.g., Leroy et al. 2008) and

they further suggest it is more appropriate for reflected SW

irradiances.

Figure 2d shows the effect of trend, autocorrelation, and

variance on TTE using values representative of observations

and CMIP6 from Eq. (3) in Weatherhead et al. (1998). For

smaller trends (less than approximately 0.13 106 PJ decade21)

TTE is more sensitive to the trend than the noise or autocor-

relation, but for SWacc trends larger than approximately 0.2 3
106 PJ decade21, noise and autocorrelation can have a more

significant impact. The magnitude of trends that TTE is sen-

sitive to also depends on the level of noise. When a time series

has greater variance it is more difficult to distinguish between

what is just noise and what is indeed a consistent trend. For

example, the solid black line (f5 0.5 and sN5 0.53 106 PJ) is

flatter across trends ranging from 0.1 3 106 to 0.2 3 106

PJ decade21 than the solid light blue line (f 5 0.5 and sN 5
2.53 106 PJ) over the same range. Similarly, if a time series has

high autocorrelation, what might appear to be a trend could

simply be the propagation of an anomaly forward in time.

While the time series of annual SWacc is a statistically con-

venient variable, using it instead of monthly averages shortens

the data record length from monthly to annual reporting, from

123 18 data points to just 18. With such a short time period, it

is reasonable to wonder if 18 years of satellite measurements

are enough to observe a trend even with the rapid changes

observed in the Arctic. The answer will be discussed in the

following section.

3. Results and discussion

From the 18-yr CERES record, the trend in SWacc at the

surface without clouds, 1.73 106 PJ decade21, is statistically

significant using the criteria jv̂/sv̂j. 2, but the trend in

SWacc at the TOA under all-sky conditions, 0.7 3 106

PJ decade21, is not. These trends and other statistics for

CERES are listed in Table 2. The limited period of obser-

vations exhibits the striking feature that it is long enough to

unambiguously detect anthropogenically forced clear-sky

variations in absorbed SW radiation but not overall all-sky

trends. If the TOAall trend calculated over 2001–18 con-

tinues into the future, we find that it would take an average

of 22 years for it to emerge above interannual variability.

This extrapolation of the observed TOAall SWacc trend into

FIG. 3. Anomalies of SWacc at (top) the top of the atmosphere with clouds (TOAall) and

(bottom) the surface without clouds (SFCclr) in CMIP6 models and observations (CERES-

EBAF). The ensemble mean from CMIP6 is shown in black. Anomalies for CMIP6models are

relative to 1900–99, and those from observations are calculated relative to 2001–18 but shifted

to align with the CMIP6 base state (the CMIP6 ensemble mean from 2001 to 2018 is calculated

and added to the CERES anomalies). For a given model, clear-sky SWacc anomalies at the

surface are greater than all-sky anomalies at the TOA. However, there are large differences

between models in terms of both the magnitude and variability of anomalies.
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the future to derive a hypothetical observational TTE is

intended to suggest an approximate length of observa-

tional record where we might anticipate observing a sig-

nificant measured trend; it is not an exact prediction of

when the trend will emerge. This hypothetical TOAall TTE

(TTEall) is nearly twice as long as that for SFCclr found

using a synthetic ensemble (12 years). The difference in

observational TTE with and without clouds stems from the

fact that the measured SFCclr trend is more than twice as

large as that of TOAall, consistent with Sledd and L’Ecuyer

(2019), while the noise and autocorrelations are similar

(Table 2).

We can compare the results of calculating TTE from

observations and models. Figure 5a shows the mean TTE

from synthetic ensembles derived from CMIP6 models

only using the variance and autocorrelation over 2001–18

forced with the trend evaluated from 2001 to 2100 for

SSP245 and SSP585. Mean TTE from Fig. 5a are listed in

Table 3. Across CMIP6, models predict the SWacc trends

emerging within 8–35 years without clouds at the surface

and 8–39 years with clouds at the TOA. The range of mean

SFCclr TTE (TTEclr) in models is larger than the 2s un-

certainty of observations, 6–18 years, but more than half

of the models predict mean TTE within 1 standard devi-

ation of the observational TTE for at least one of the SSP.

However, there are some differences between models and

observations. Six models under SSP245 and 16 models

under SSP585 predict mean TOAall trends to have emerged

within the observational record, contrary to our earlier findings.

For SFCclr trends, 17 models under SSP245 suggest a longer

record would be needed for the trend emerge, reducing to

only 11 models under SSP585, which is also in contrast to the

observational results.

Different relationships between TTEall and TTEclr also

emerge in Fig. 5a compared to TTE calculated using CERES.

Under SSP245, half of the 18 models show clouds lengthening

the TTE as in observations. Three models have mean TTE that

are equal with and without clouds, and six models actually

TABLE 2. CERES-EBAF properties for all-sky top-of-atmosphere (TOAall) and clear-sky surface (SFCclr) accumulated shortwave

(SWacc). Noise, lag-1 autocorrelations, and trends are from 2001 to 2018. Mean time to emergence (TTE) is calculated from 300 synthetic

time series using these statistics, with standard deviations given in parentheses.

Noise (106 PJ) Autocorrelation Trend (106 PJ decade21) TTE (yr)

TOAall 0.77 0.29 0.72 22 (5)

SFCclr 0.84 0.14 1.7 12 (3)

FIG. 4. Autocorrelation functions (ACF) for SWacc anomalies at (top) TOAall and (bottom)

SFCclr in (left) observations (CERES-EBAF) and (right) a typical climate model, MRI-ESM2.

No autocorrelations are significant at any lags (95% confidence interval are shown as the

dashed line); however, this may be due in part to the short record (18 years). When ACF are

calculated over longer time periods in CMIP6 models, shown here for 1900–99, SWacc anom-

alies usually appear as red or white noise.
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show the opposite behavior of observations, with the all-sky

SWacc trend emerging before the clear-sky trend. This result is

unexpected based on our understanding of how clouds influ-

ence albedo in present-day observations, as shown in Fig. 1.

When TTE is calculated using SSP585, only six models show

clouds lengthening the TTE, three models show clouds having

no effect on TTE, and nine models predict that clouds shorten

the TTE.

To distinguish the influence of internal variability from

modeled trends, we generate new synthetic time series that

combine the statistical characteristics (s and f) from ob-

servations with trends from CMIP6 models calculated over

the twenty-first century (2001–2100), shown in Fig. 5b and

listed in Table 4. To disentangle biases in model internal

variability versus the external forcing, we can compare

TTE calculated solely from models to TTE calculated from

observations forced by model trends. A significant differ-

ence between Figs. 5a and 5b is the impact of clouds on

TTE magnitude. Unlike in Fig. 5a, clouds always increase

the TTE in Fig. 5b, consistent with observations, since in all

models the SFCclr trend is larger than the TOAall trend.

Biases in model noise and autocorrelations therefore must

be a significant driver of why clouds shorten TTE in

some models.

Figure 5b further suggests that few models capture the

difference between TOAall and SFCclr trends. Under either

SSP, nine of the 18 models predict TTEclr within one stan-

dard deviation of observations. Of these models, all but one

(NorESM2-LM) predict that the TOAall trend should have

emerged within the CERES record, which we do not observe.

This is to say models may capture trends at one boundary but

rarely both. Although we cannot know in the present what the

trend in TOAall SWacc will be over the coming decades, we

can characterize its current behavior, and it seems that many

models may not fully capture the impact of clouds on SWacc in

the Arctic.

The remainder of this study investigates how the statistical

properties of SWacc affect TTE, what physically drives those

FIG. 5. (a) Mean TTE of SWacc trends from 300 synthetic time series based on CERES-EBAF observations and

CMIP6 models. Variance and autocorrelation are calculated over 2001–18 and forced with trends over 2001–2100

for CMIP6 models and 2001–18 for CERES-EBAF. Error bars represent 1 standard deviation around the mean

TTE. Two shared societal pathways (SSP) are shown: a ‘‘middle of the road’’ future (SSP245) and a ‘‘business as

usual’’ future (SSP585). Observations suggest that trends in SFCclr SWacc have emerged in the 18-yr observational

record whereas TOAall SWacc will require more years of observations to discern. (b) TTE calculated from synthetic

time series with variability based on CERES-EBAF forced with trends from CMIP6 models used in (a). The

difference between (a) and (b) shows the impacts of model internal variability on SWacc TTE.Values frombar plots

are given in Tables 3 and 4.
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properties, and why some models show behavior that is dif-

ferent than observations in regard to clouds lengthening TTE.

a. A signal-to-noise problem

In this section we assess the relative importance of SWacc

trend, autocorrelation, and variability on TTE across cli-

mate models, beginning with how these statistics them-

selves can vary between distinct epochs within an individual

model. While the observational record provides a limited

number of years from which to calculate these statistics, that

is not a limitation when using climate models. With the longer

time series available from CMIP6 the influence of using dif-

ferent time periods on estimated TTE can be investigated,

with the results being model-dependent. Using synthetic en-

sembles created by varying the starting year and length of

time used to calculate the noise and autocorrelation (1983–

2000, 1983–2018, 2001–18, and 2001–36) we find that only 7

and 6 of the 18 models generate mean TTE for TOAall trends

and SFCclr, respectively, within 1 standard deviation of each

other regardless of which time period is used to generate the

synthetic time series. The distinct behaviors of different

models are exemplified by EC-Earth3 in Fig. 6, which

exhibits a tightly constrained TTE, and GFDL-ESM4 where

TTE can more than double across the range of time periods

explored (plots for all models are provided in Fig. S1 of the

online supplemental material). In all cases, trends are held

constant for each model computed from either 1983 or

2001 through 2100.

For models where TTE varies markedly with epoch, the

noise and autocorrelation are more sensitive to the time

period than the trend is. Furthermore, noise and autocor-

relation seem to be more sensitive to which epoch is used

rather than the length of the time period analyzed. For

example, noise and autocorrelation in GFDL-ESM4 are

relatively low during 2001–18 and 2001–36, whereas they

increase during time periods that start in 1983 (1983–2000

and 1983–18).1 On the other hand, trends in SWacc are

fairly constant regardless of the time period for all models

when determined over the twenty-first century. The con-

sistency is likely due, in part, to the fact that the trend is

measured over many decades, regardless of the starting

year. This supports the assertion that we are testing for a

consistent and measurable trend due to the external forc-

ing. However, we note that if trends are calculated over

shorter time periods, such as over 2001–18 to compare with

our observational record, they are often not representative

of the true forcing and are in fact occasionally negative

(not shown). While only four different time periods are

shown in Fig. 6, the same conclusions are drawn when more

time periods are tested.

In the remaining analysis, we adopt the synthetic ensembles

Fig. 5a is based on, where 2001–18 is used to calculate the

TABLE 3. TTE from 300 synthetic time series based on models

only with noise and autocorrelation calculated from 2001 to 2018

forcedwith trends from 2001 to 2100. Standard deviations are given

in parentheses.

TOAall TTE (yr) SFCclr TTE (yr)

SSP245 SSP585 SSP245 SSP585

ACCESS-CM2 16 (5) 13 (5) 14 (5) 13 (5)

ACCESS-ESM1.5 16 (7) 13 (8) 16 (6) 16 (6)

BCC-CSM2-MR 39 (15) 18 (15) 17 (6) 8 (6)

CESM2 21 (6) 11 (6) 28 (6) 14 (6)

CESM2(WACCM) 18 (6) 11 (6) 18 (6) 11 (6)

CanESM5 13 (5) 9 (5) 14 (3) 11 (3)

EC-Earth3 20 (5) 17 (5) 23 (4) 21 (4)

EC-Earth3-Veg 19 (5) 18 (5) 18 (4) 19 (4)

GFDL-ESM4 31 (9) 15 (9) 26 (7) 14 (7)

INM-CM4.8 31 (12) 23 (12) 22 (7) 20 (7)

INM-CM5.0 28 (9) 21 (9) 29 (7) 25 (7)

IPSL-CM6A-LR 15 (5) 10 (5) 20 (5) 12 (4)

MIROC6 11 (5) 8 (5) 11 (4) 8 (4)

MPI-ESM1.2-LR 34 (8) 16 (8) 35 (7) 20 (7)

MPI-ESM1.2-HR 27 (9) 17 (9) 20 (7) 14 (7)

MRI-ESM2 22 (7) 13 (7) 18 (5) 11 (5)

NESM3 22 (6) 13 (6) 16 (5) 11 (5)

NorESM2-LM 28 (7) 17 (7) 24 (5) 17 (5)

TABLE 4. TTE from 300 synthetic time series based on noise and

autocorrelation from observations (CERES-EBAF) forced with

trends from CMIP6 models over 2001–2100. Standard deviations

are given in parentheses.

TOAall TTE (yr) SFCclr TTE (yr)

SSP245 SSP585 SSP245 SSP585

ACCESS-CM2 23 (5) 18 (5) 20 (5) 17 (5)

ACCESS-ESM1.5 34 (8) 24 (7) 25 (6) 17 (6)

BCC-CSM2-MR 75 (15) 34 (15) 26 (6) 16 (6)

CESM2 30 (6) 16 (6) 25 (6) 13 (6)

CESM2(WACCM) 28 (6) 16 (6) 22 (6) 13 (6)

CanESM5 22 (5) 15 (5) 15 (3) 11 (3)

EC-Earth3 24 (5) 15 (5) 17 (4) 12 (4)

EC-Earth3-Veg 22 (5) 15 (5) 17 (4) 12 (4)

GFDL-ESM4 46 (9) 27 (9) 29 (7) 20 (7)

INM-CM4.8 55 (12) 33 (12) 31 (7) 21 (7)

INM-CM5.0 47 (9) 32 (9) 29 (7) 20 (7)

IPSL-CM6A-LR 24 (5) 15 (5) 18 (4) 12 (4)

MIROC6 22 (5) 16 (5) 16 (4) 11 (4)

MPI-ESM1.2-HR 41 (8) 26 (8) 27 (7) 18 (7)

MPI-ESM1.2-LR 42 (9) 29 (9) 25 (7) 19 (7)

MRI-ESM2 34 (7) 21 (7) 24 (5) 16 (5)

NESM3 30 (6) 18 (6) 21 (5) 14 (5)

NorESM2-LM 33 (7) 21 (7) 25 (5) 15 (5)

1 The changes in measured SWacc variability may be due to the

eruption of Mount Pinatubo in 1991, which caused a decrease in

SWacc. For models with relatively low variability, this decrease in

SWacc would appear as large and would increase the variance for

time periods including 1991 as compared with time periods without

it. For models with relatively large SWacc variability, the decrease

in SWacc resulting from the eruption of Mount Pinatubo would not

be atypical and therefore would have a minimal impact on the

measured variability.

1 FEBRUARY 2021 S LEDD AND L ’ ECUYER 939

Brought to you by UNIVERSITY OF WISCONSIN MADISON | Unauthenticated | Downloaded 04/21/21 04:58 PM UTC



FIG. 6. TTE and statistical properties of TOAall and SFCclr SWacc used to calculate TTE from four

different time periods. Solid lines represent values from CERES-EBAF. (left) TTE derived from EC-

Earth3 is generally independent of the time period used to calculate it despite large variations in

SWacc lag-1 autocorrelation. (right) TTE from GFDL-ESM4 vary by more than a factor of 2 be-

tween time periods. This variability is mostly due to differences in noise and autocorrelation as the

SWacc trends are fairly consistent, regardless of the starting year. Although only time periods from

SSP245 are shown, the results are consistent when using SSP585.
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variance and autocorrelation and 2001–2100 is used to calcu-

late trends. While the relationships between TTE and envi-

ronmental factors discussed later are robust regardless of the

chosen time periods, this choice of years allows a more con-

sistent comparison with observations. Even in this one time

period there are large intermodel differences in SWacc forced

trends and internal variability, shown in Fig. 7. Trends

in SWacc vary by an order of magnitude under SSP585 both

with and without clouds and under SSP245 without clouds.

Internal variability also varies significantly, doubling or even

quadrupling across models, depending on the boundary and

SSP. Seven of the models have variances within observa-

tional uncertainty for all boundaries and SSPs (using an F

test with 95% confidence). Twice as many models (eight)

differ significantly from observations for TOAall than for SFCclr

(four). While models disagree on the sign of SWacc autocor-

relation, most fall within the 2s range of uncertainty for the

observational values.

These intermodel differences in SWacc trend, autocorrela-

tion, and variability in turn lead to differences in TTE.

Mathematically, the main influence on TTE is the ratio of the

forced SWacc trend to the internal variability, that is, the

climate signal-to-noise ratio (SNR), shown in Fig. 7a. The

SNR captures the primary question of TTE: when does a

trend rise above the noise? Larger trends or smaller vari-

ability can increase SNR and reduce the TTE, but neither the

trend (Fig. 7b) nor noise (Fig. 7c) alone is as strongly corre-

lated to TTE as their ratio, both with and without clouds.

Across models the trend has a greater impact on TTE than

noise because it can vary by an order of magnitude while the

noise varies by a factor of 4. Overall, the autocorrelation is

weakly related to the TTE, despite ranging from positive to

negative (Fig. 7d).

For a given model, the greatest differences between SSPs

are in the strength of the forced SWacc trends and the re-

sulting SNR. As previously mentioned, SSP585 shows stron-

ger trends in SWacc than in SSP245, and therefore shorter

TTE. Models with smaller trends than observations (indi-

cated by plus signs in Fig. 7) often have longer TTE, and vice

versa. Such is the case under SSP245 where SFCclr trends

(light blue) are underestimated in Fig. 7b. The inverse may be

true for TOAall trends (dark red) under SSP585, but it is

uncertain given that the TOAall trend has not emerged in the

observations. Because of the different trend magnitudes,

FIG. 7.MeanTTEand SWacc statistical properties from 2001 to 2018 (noise and autocorrelation) and from2001 to

2100 (trend) in CERES-EBAF and CMIP6. Error bars represent the 2s range of uncertainty in observations. The

SNRhas the strongest relationship to TTE as it represents the strength of the trend against the variability, both with

clouds at the top of the atmosphere (TOAall) and without clouds at the surface (SFCclr). Clouds reduce the

magnitude of SWacc trends, and sometimes the noise, within a given model. In observations, clouds significantly

reduce the SNR, but for most models in CMIP6 they only have a moderate effect on SNR.
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under SSP245 the SWacc trend is a stronger predictor of TTE

than noise because TTE is more sensitive to trend at these

lower magnitudes, whereas noise and autocorrelation influ-

ence TTE more under SSP585, consistent with our discussion

of theoretical TTE with Fig. 2d in section 3. Both SSPs have

similar ranges of noise and autocorrelation across models,

which is consistent with the SSPs not diverging until 2015.

While the full range of SWacc variability encompasses the

observations in Fig. 7c, more models underestimate the ob-

served variability in SWacc, particularly at the TOA with

clouds.

Differences between TOAall and SFCclr SWacc behavior are

fairly consistent across SSPs as well. As mentioned previously,

clouds dampen the SWacc trend at the TOA but not at the

surface, and in models clouds also appear to reduce the vari-

ance of SWacc. This impact has a few consequences. First, it

means that trends are more linearly related to TTE for TOAall,

especially for SSP245 (dark blue in Fig. 7b), whereas SFCclr

noise and autocorrelation have stronger relationships to TTE

than TOAall, more notably for SSP585 (orange in Figs. 7c,d).

Because clouds both dampen the signal and noise in models,

the SNR are similar for SFCclr and TOAall.

Not all of these impacts of clouds are seen in observations,

though. In observations, clouds reduce the measured SWacc

trends by more than a factor of 2 (black vs gray plus signs in

Fig. 7b). Clouds have only a small impact on the noise and

autocorrelation, so they ultimately reduce the SNR by a factor

of 2 between SFclr and TOAall as well. This impact of clouds is

not always found in CMIP6 models despite the observational

values being within the ensemble ranges.

b. Impact of sea ice on TTE

Sea ice influences numerous aspects of the Arctic climate,

including SWacc. The more rapidly and consistently sea ice

disappears, the faster the SWacc trend emerges, as shown in

Fig. 8. Trends in sea ice area (SIA) over the twenty-first century

strongly influence the TTE both with and without clouds and

under SSP245 and SSP585 (Fig. 8b). The SNR of SIA is also

correlated with TTE (Fig. 8a), mostly due to the impact of SIA

decline and to a lesser extent the variability of SIA (Fig. 8c).

We find that SIA autocorrelation has little impact on SWacc

TTE (Fig. 8d), likely because persistence of sea ice anomalies

tends not to extend beyond a year (Blanchard-Wrigglesworth

et al. 2011).

FIG. 8. Relationship between mean TTE for SWacc and the statistical properties of sea ice area (SIA) averaged

over the melt season (March–September) from 2001 to 2018 (noise and autocorrelation) and from 2001 to 2100

(trend). Error bars represent the 2s range of uncertainty in observations. The greater the SIA decline is, the faster

the SWacc trend emerges, regardless of cloud cover. The SIA trend and SNR both impact SWacc at SFCclr and

TOAall. SIA noise is related to SFCclr TTE but has a minimal influence on TOAall TTE.
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The importance of SIA on SWacc is physically consistent

with our understanding of the Arctic energy budget and

the ice albedo feedback. However, there are some sub-

tleties that are smoothed over when using SWacc and SIA.

SIA and SWacc encompass the entire melt season, which re-

moves some of the strong differences between March and

September. While sea ice decline is largest in the autumn

when it reaches its minimum, incoming SW peaks in June.

Sea ice in midsummer, therefore, has a larger impact on the

Arctic albedo and absorbed SW. Relating SIA to SWacc also

ignores changes in sea ice albedo throughout the melt sea-

sons, which can be significant when melt ponds form (Perovich

et al. 2002).

While SIA strongly influences SWacc under both SSPs, there

are some slight differences between the two forcing pathways

that are highlighted in Fig. 8. As would be expected, SIA trends

are larger under SSP585 due to increased GHG emissions and

warming for individual models. SIA observations calculated

over 2001–18 are closer to values from SSP585, but there is

some overlap in the rate of SIA decline between SSPs when

looking at the full CMIP6 ensemble. SIA noise also seems to

influence TTEmore in SSP585 than SSP245, as was the case for

SWacc in Fig. 7b. This is likely due to the greater trends in SIA

pushing TTE into a regime where noise and autocorrelation

can have greater impacts, as discussed with theoretical SWacc

TTE in Fig. 2d.

c. Inconsistent cloud impacts on TTE

Figure 8 further suggests that model cloud biases may in-

fluence their predictions of the emergence of forced varia-

tions in all-sky SWacc. Recently observed trends in SIA fall

within the envelope of behavior predicted by the CMIP6

ensemble, and the relationship between TTEclr and SIA seen

in observations is represented in models. All models, how-

ever, underestimate the relationship between TTEall and SIA

trend and SNR. For example, while EC-Earth3 produces a

similar trend in SIA to observations, the TTEclr from EC-

Earth3 actually resembles the TTEall projected from ob-

servations (Fig. 7b). The TTEall is 7 yr shorter in EC-Earth3

than observations and is actually shorter than SFCclr, while

observations suggest that clouds lengthen the TTE. This is a

common bias in which many models seem to struggle pre-

dicting the impact of clouds on forced climate trends.

We now turn to the question of why clouds shorten the TTE

in some models, contrary to observations and physical intui-

tion. In observations, clouds increase the TTE from SFCclr to

TOAall because the SWacc trend is smaller with clouds while

the noise and autocorrelations are similar (Table 2).Admittedly,

the TOAall trend and therefore TTE are uncertain in observa-

tions, but we can find the minimum possible difference in TTEall

and TTEclr. If one more year of observations proved the TOAall

trend significant, for example TTEall 5 18 1 1, the minimum

ratio of TTEall to TTEclr would be 19/12 5 1.6—over a 50%

increase. This cloud masking effect has been documented in

several other studies and means that the SFCclr SNR is larger

than that of TOAall. Many models do not reproduce these re-

lationships, though. In Fig. 9, for example, only one model,

BCC-CSM2-MR, predicts a TTEall to TTEclr ratio larger than

observations or even the minimum ratio of TOAall to SFCclr,

shown with the shaded region in Fig. 9.

Because SWacc SNR is strongly correlated with TTE, its

ratio of TOAall to SFCclr is also strongly correlated to the ratio

of TTE, shown in Fig. 9a. Above an SNR of approximately 0.8,

the TOAall trend may emerge before the SFCclr. In some

models, clouds even cause the SNR to be higher at the TOA

relative to the surface (TOAall/SFCclr. 1), which is opposite to

observations. While the SNR is dependent on the ratio of

trends with and without clouds, clouds dampen the SWacc sig-

nal in all models (Fig. 9b). For the TOAall trend to emerge first,

clouds must also appreciably dampen the TOAall variabil-

ity (Fig. 9c).

For any given model, the ratios of TTE and SWacc

properties do not vary appreciably between SSPs. While

SWacc trends can differ by an order of magnitude between

SSP245 and SSP585 in Fig. 7b, the ratios are never more

than 2 times as large in Fig. 9b. For example, the ratio of

trends in BCC-CSM2-MR (filled upside-down triangles)

only vary from 0.2 (SSP 245; blue) to 3.5 (SSP585; orange),

with most other models varying even less between SSPs.

That is to say, the impact of clouds on SWacc is likely due to

inherent model physics rather than uncertainty from ex-

ternal forcings.

So how do clouds influence the climate SNR and resulting

TTE? Over the Arctic, models vary widely in their predicted

cloud fraction (CF) responses over the melt season with

some showing increases, others showing decreases, and

some having no change (Fig. 10). The sign of modeled CF

trend plays a significant role in defining the how surface al-

bedo changes manifest themselves in changes in absorbed

SW radiation at the TOA. Models that predict decreasing

CF predict stronger TOAall SWacc trends, stronger TOAall

SNR, and shorter TTEall than exist at the surface, indicative

of a cloud feedback that amplifies the influence of sea ice on

absorbed shortwave radiation. This relationship is stronger

under SSP585 as the magnitude of CF trends increases with

climate forcing for any given model. Reduced cloud cover in

models can reduce the planetary albedo in a few ways.

Clouds directly reflect incoming SW at the TOA, so reduced

cloud cover results in an increase of insolation at the surface.

In addition, the presence of fewer clouds means that changes

in the surface albedo are more directly seen from space,

amplifying the albedo impact of sea ice loss. Models with

negative CF trend, therefore, have SWacc trends that are

closer in magnitude with and without clouds at the TOA and

surface in Fig. 10c. At the opposite end of the spectrum, the

only model that shows a TTE ratio greater than observa-

tions, BCC-CSM2-MR, also has the largest positive trend in

CF and greatest difference between TOAall and SFCclr

SWacc trends.

Cloud fraction alone does not, however, explain all of the

differences between TOAall and SFCclr SWacc in Fig. 10.

Mean CF over 2001–18 has no impact on the ratio between

TTEall and TTEclr, noise, or autocorrelation during the time

period (not shown). Furthermore, the radiative impacts of

clouds also depend on the microphysical properties. In par-

ticular, cloud phase can have a substantial impact on SW
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radiative forcing (Cesana et al. 2012; McIlhattan et al. 2017).

We suspect discrepancies in cloud phase between models

could further explain differences in noise between TOAall

and SFCclr SWacc given that such differences in cloud phase

have explained past biases in model SW cloud radiative

forcing in the Arctic (Gorodetskaya et al. 2008) and can

further impact the global mean cloud feedback (Zelinka

et al. 2020). While relevant, a detailed analysis linking cloud

phase and differences in TOAall and SFCclr SWacc would

require data with higher temporal resolution than are cur-

rently available through CMIP6 for all but a few of the

models used in this work.

d. SWacc as a proxy for Arctic and global change

As noted in the introduction, the amount of solar radiation

absorbed in theArctic, SWacc, is a fundamental driver of Arctic

climate. This relationship is shown more directly in Fig. 11a

that quantifies the relationship between TTEall and Arctic

warming over the twenty-first century in the CMIP6 models.

While the calculation of TTEall is independent of temperature

trends, Fig. 11a shows that it is strongly correlated with the

projected change in annual average surface temperature in

Arctic (DT; defined as temperature averaged over 2081–2100

minus temperature averaged over 2001–18). This demonstrates

very clearly that there is a connection between greater Arctic

warming, increasing SWacc, and increased sea ice loss. Models

with stronger ice-albedo feedbacks have warmer oceans that

promote more rapid sea ice melt, stronger increases in SWacc

(i.e., shorter TTE), and, in turn, more ocean warming. Yet

while TTEall appears related to both Arctic and global warm-

ing, it has essentially no relationship to Arctic amplification

(AA), the relative magnitude of Arctic warming to global

warming. In Fig. 11c a wide range of TTEall (10–40 years)

cluster near AA values around 2.5.

While this analysis does not reveal the precise nature of

these processes or their timing (i.e., cause and effect), it

suggests that TTEall could be a useful proxy for Arctic climate

change for which we have a growing observational record. In

addition, TTEall may be a good predictor of global temper-

ature changes over the twenty-first century, particularly for

the ‘‘business as usual’’ pathway, SSP585 (Fig. 11b). Changes

in global mean surface temperature from 2001–18 to 2081–

2100 decrease sharply with increasing TTE. This relationship

suggests that the strength of Arctic SWacc trends, relative to

FIG. 9. Dependence of the ratio of TOAall to SFCclr SWacc TTE on SWacc statistical properties. The shaded

region represents TTE ratios below the minimum ratio if one more year of observations proved the TOAall

trend to be significant. The relative strength of the SNR with and without clouds is negatively related to the

relative length of TTE. When the TOA and surface SWacc trends are similar, the TOA SWacc trend may emerge

sooner if the natural variability at the surface is larger than that at TOA. This relationship holds for both SSPs.

Most models underestimate the influence that clouds damping the SWacc trend and SNR has on the difference

in TTE.
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interannual variability, may be a good observation-based

proxy for both Arctic and global temperature change but

not AA.

4. Conclusions

This work evaluates forced and natural variations in Arctic

absorbed shortwave radiation in observations and GCMs to

establish the time to emergence of trends and how they are

influenced by clouds. We find that the observed trend in clear-

sky SWacc at the surface is significant at the 95% confidence

level using only 18 years of satellite observations. Clouds re-

duce the SWacc trend measured in observations by at least half

at the TOA resulting in the conclusion that the current ob-

servational record is insufficient to confirm any forced trend in

SWacc relative to interannual variability.

The 18 CMIP6 models analyzed in this study exhibit large

intermodel spread in both forced trends and internal variabil-

ity: SWacc trends vary by an order of magnitude and natural

variability varies by up to a factor of 4. CMIP6 models further

disagree on the effect of clouds on trends in SWacc. While some

predict that clouds increase TTE, consistent with observa-

tions, many fail to reproduce this fundamental feature in the

CERES-EBAF record (Fig. 1), possibly as a result of cloud

feedbacks that artificially augment the SNR of surface albedo

signatures at the TOA. Themagnitude of TTE is largely driven

by the decline of sea ice in models, as the statistical behavior of

SIA largely determines those of SWacc both with and without

clouds. Trends in GCM cloud cover over the twenty-first cen-

tury dictate whether or not clouds increase or decrease the time

needed to detect a trend in SWacc. Models that predict de-

creasing CF with Arctic warming predict stronger TOAall

SWacc trends and shorter TTEall than without clouds, but fur-

ther work is needed to assess the role of cloud microphysical

properties and phase in modulating SWacc trends in the Arctic.

Accumulated SW radiation is linked to both Arctic and

global temperature changes and shows potential as an obser-

vational metric of future Arctic climate change impacts. The

results presented here suggest that the trend in TOAall SWacc

may emerge from interannual variability in the next decade.

Thus, the extended observation record provided by continued

CERES measurements and the planned Earth Radiation

Budget continuity mission, Libera, will, it is hoped, be of suf-

ficient duration to determine the the TOAall trend. In turn this

would allow the identification of climate models that best

capture the processes that govern this fundamental measure of

Arctic climate. Deeper investigation into the sea ice and cloud

trends in these models may improve understanding of these

FIG. 10. Role of twenty-first-century cloud fraction (CF) trends in modulating the ratio of TOAall to SFCclr

accumulated shortwave TTE. The atmosphere, and clouds in particular, account for much of the planetary albedo

both globally and in theArctic.Models that predict decreasing cloud cover over the twenty-first century amplify the

effect of reduced surface albedo from sea ice on TOA SWacc by both lowering the atmospheric contribution to the

planetary albedo and revealing dark open ocean. This impact is linked to the relative strength of SWacc trends and

SNR with and without clouds in both SSPs.
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key drivers of Arctic climate and, possibly, provide a constraint

on anticipated global temperature change.
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