
1.  Introduction
In radiative equilibrium over sufficiently long time scales, radiative forcing, the difference between incom-
ing and outgoing radiation, is balanced by amplified or dampened responses in radiative fluxes due direct-
ly or indirectly to forced changes in temperature—a process known as radiative feedback. The radiative 
feedbacks can be separated into contributions from the atmosphere and surface temperature, water vapor, 
cloud, and surface albedo (Soden & Held, 2006). Uncertainty relevant to these feedbacks, particularly the 
cloud feedback, exists in current global climate models (GCMs) and is the main cause of intermodel differ-
ences in estimating the equilibrium climate sensitivity (e.g., Bony et al., 2006; Dufresne & Bony, 2008; Vial 
et al., 2013; Zelinka et al., 2020).

The radiative kernel technique (Soden & Held, 2006) is extensively used to isolate and quantify a radiative 
feedback or changes in radiative fluxes at the surface (SFC) and top-of-atmosphere (TOA) caused by a 
certain atmospheric or surface variable. A radiative kernel is commonly generated by computing the differ-
ential radiative response (K R x

x   /  ) of the radiative flux (E R ) at the SFC or TOA to a small perturbation 
of a state variable E x (e.g., temperature, water vapor, and surface albedo) based on a radiative transfer model 
and the climatological base state. Multiplying the kernel with the climate response of the variable ( x T/  , 
where T is the surface air temperature) or the perturbation in the variable itself (  B AE x x x  , where A and 
B represent two different atmospheric states in equilibrium) quantifies the radiative feedback ( R T/  ) or the 
changes in flux due to the perturbation (E R ).

The climatological base state used for the kernel calculation usually comes from a GCM or a GCM-based 
reanalysis. A GCM represents a global climate system that approximately satisfying the conservation laws 
of momentum, mass, and energy, and therefore is a great tool to estimate radiative feedbacks in idealized 
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experiments and future projections. The TOA-based kernels were first calculated with the GFDL model 
(Soden & Held, 2006; Soden et al., 2008). Since then, the simplicity of the radiative kernel technique and its 
easy application across different GCMs have encouraged many other versions of kernels. The SFC or TOA-
based kernels have been generated with CAM3 (Shell et al., 2008), ECHAM5 (Previdi, 2010), MPI-ESM-LR 
(Block & Mauritsen, 2013), CESM-CAM5 (Pendergrass et al., 2018) model, and among others, as well as the 
ERA-Interim and RRTM reanalysis (Huang et al., 2017). The kernel technique has also been adapted for 
a better separation of individual feedbacks (Block & Mauritsen, 2013; Held & Shell, 2012), for simulations 
with large forcings or perturbations (Jonko et al., 2012; Sanderson & Shell, 2012), and for computing cloud 
feedbacks (Zelinka et al., 2012a).

However, the GCM-based radiative kernels are susceptible to systematic biases and limitations associated 
with the model-derived climatological base state, which can lead to uncertainty in the estimation of radi-
ative feedbacks. For example, differences in the approximate parameterization of horizontal and vertical 
cloud distribution among GCMs can contribute to differences in the kernel calculation (Kramer et al., 2019). 
When applying these GCM-based kernels to present-day climate, the biases of the kernel-estimated radia-
tive feedbacks and changes in radiative fluxes can be amplified by large differences between the model-de-
rived base state and the observed climatology due to the assumption of linearity between the radiative fluxes 
and the state variables in the kernel calculation (Block & Mauritsen, 2013; Jonko et al., 2012).

Radiative kernels derived directly from observations are independent of the GCM-based biases and are 
better suited for understanding changes in radiative fluxes within the modes of natural climate variabilities. 
For example, Berry et al.  (2020) created cloud radiative kernels from A-Train over the Eastern Pacific to 
examine liquid clouds in CAM5. Kramer et al. (2019) developed a set of observation-based radiative ker-
nels using the CloudSat level-2B atmospheric fluxes and heating rate product (2B-FLXHR-LIDAR; Matus 
& L’Ecuyer, 2017). Their approach to derive the satellite-based CloudSat kernels is similar to the process 
of generating GCM-based kernels. They recomputed atmospheric instantaneous fluxes in both clear and 
cloudy skies using the 2B-FLXHR-LIDAR algorithm initialized with the profiles of cloud information from 
CloudSat/CALIPSO and the state variables (temperature, water vapor, and surface albedo) and derived the 
12-month radiative kernels from the differences between the fluxes with and without perturbation.

Although these observation-based radiative kernels are ideal for evaluating radiative feedbacks in GCMs 
and estimating radiative feedbacks or changes in radiative fluxes due to natural climate variability, they 
could still be susceptible to a variety of errors. For example, the 12-month CloudSat radiative kernels are 
only based on one year of data from 2009 since the kernel calculation is computationally expensive (Pen-
dergrass et al., 2018). Therefore, they do not represent the internal interannual variability. According to 
Kramer et al. (2019), interannual variability is a relatively small source for radiative kernel error globally 
and zonally, but the errors are larger locally, especially in regions where the radiative kernel is small. Given 
the fact that the CloudSat 2B-FLXHR-LIDAR product does not capture the diurnal cycle, does not resolve 
spatial scales less than 1 km, and typically cannot discern precipitation from clouds, the related errors/
uncertainty may show up as a residual in the monthly averaged CloudSat kernels. Additionally, since the 
CloudSat radiative kernels rely on a radiative transfer model, they may be subject to radiative transfer errors, 
which has led to differences in SFC-based GCM radiative kernels (Kramer et al., 2019).

The exercise of validating the observation-based CloudSat radiative kernels with reanalyzes and observa-
tions is a worthwhile one. Here, we assess satellite-based radiative kernels using observed and reanalyz-
ed broadband longwave (LW) and shortwave (SW) fluxes and atmospheric profiles from the Atmospher-
ic Radiation Measurement (ARM) program (Ackerman & Stokes, 2003; Ellingson et al., 2016, chapter 1; 
Stokes, 2016, chapter 2; Stokes & Schwartz, 1994) and ERA5 reanalysis at four different research facilities 
(with a total of six sites) located in Southern Great Plains, North Slope of Alaska, Tropical Western Pacific, 
and Eastern North Atlantic. These facilities are under a variety of climate conditions, whose observations 
offer a unique resource to evaluate the CloudSat kernels and the decomposition of changes in fluxes us-
ing these kernels. Since the ARM sites only provide observed radiative fluxes at the SFC, we employ the 
co-located satellite-based clear-sky TOA fluxes from Clouds and Earth's Radiant Energy System (CERES) to 
assess the TOA radiative kernels. Following the approach in Huang et al. (2007), monthly anomalies of the 
observed or reanalyzed profiles of atmospheric temperature and humidity together with estimated surface 
albedo are convolved with the SFC and TOA CloudSat radiative kernels to produce the kernel-estimated 
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changes in SFC and TOA fluxes, which are then compared with the flux anomalies from ARM/CERES or 
the ERA5 reanalysis. In addition, we identify the contribution from each kernel state variable to the changes 
in radiative fluxes at each ARM site and investigate the potential sources of bias in these kernel-estimated 
changes.

2.  Data
2.1.  Observation-Based Radiative Kernels From CloudSat/CALIPSO

The total-sky and clear-sky CloudSat radiative kernels for perturbations of the air and surface temperature, 
water vapor, and surface albedo are based on the TOA and SFC broadband LW and SW fluxes from CloudSat 
2B-FLXHR-LIDAR fluxes and heating rate product (Matus & L’Ecuyer, 2017). Following Soden et al. (2008), 
Kramer et al. (2019) perturbed the inputs (including the temperature, humidity, surface albedo, and profiles 
of cloud information) to the 2B-FLXHR-LIDAR algorithm (Henderson et  al.,  2013) to derive perturbed 
TOA and SFC CloudSat fluxes at each horizontal point corresponding to a 1K increase in temperature, a 1% 
increase in surface albedo, and an increase in specific humidity corresponding to a 1K warming at fixed rel-
ative humidity. The temperature and humidity profiles were from the CloudSat ECMWF-AUX data product, 
which is customized from the AN-ECMWF data set (provided by the European Center for Medium-Range 
Weather Forecasts) by setting to the time and location of each Cloudsat footprint. Surface albedo is from 
the CloudSat ancillary albedo product based on the International Geosphere-Biosphere Programme global 
land surface classification. The profiles of cloud information include cloud liquid water content and ice 
water content from the CloudSat 2B-CWC product and Cloud layers and their heights from the combined 
CloudSat and CALIPSO product (Henderson et al., 2013).

The radiative kernels for each atmospheric state variable were generated from the differences between the 
perturbed fluxes and those from the standard 2B-FLXHR-LIDAR calculation without any perturbed varia-
bles. Additional details can be found in Kramer et al. (2019) and Henderson et al. (2013). The 12-monthly 
mean radiative kernels used in this study are archived on a 2° × 2.5° global grid and 30 sigma vertical levels. 
For each ARM site, the radiative kernels at the nearest grid point to the actual location of that ARM site are 
used.

2.2.  ARM Data

The four primary ARM sites considered in this study are: the Southern Great Plains (SGP; Sisterson 
et al., 2016) centered at 36.6°N, 97.5°W (near Lamont, Oklahoma, United States), the North Slope of Alaska 
(NSA; Verlinde et al., 2016) at 71.3°N, 156.6°W (Barrow, Alaska, United States), the Tropical Western Pacific 
(TWP C1; Long et al., 2016) at 2.0°S, 147.4°E (Manus Island, Papua New Guinea), and the Eastern North 
Atlantic (ENA C1) site at 39.1°N, 28°W (Graciosa Island in the Azores archipelago). TWP field sites at 0.5°S, 
166.9°E (TWP C2; Nauru Island, Republic of Nauru) and 12.4°S, 130.9°E (TWP C3; Darwin, Australia) 
are also included. The facility operations and data collections began in 1993 for SGP, 1997 for NSA, 1996 
for TWP, and 2013 for ENA. Operations and data collections for the three TWP sites ended in 2014. Each 
of these six sites consists of a multitude of instruments, including the millimeter-wavelength cloud radar, 
Raman lidar, broadband radiometers, aerosol observing systems, and balloon-borne radiosondes. These 
observing systems routinely measure vertical profiles of clouds and their optical properties as well as the 
atmospheric profiles of temperature and humidity.

2.2.1.  Observed SFC Radiative Fluxes From ARM Radiative Flux Analysis (RFA)

We extract the total-sky and clear-sky downwelling and upwelling SFC SW fluxes and downwelling SFC 
LW flux from the quality-controlled ARM RFA value-added product (ARM, 2020). The clear-sky fluxes are 
estimated from the algorithms for detecting clear skies and fitting clear-sky SW and LW functions, which 
are described in Long and Ackerman (2000) and Long and Turner (2008). The estimated uncertainty for 
total-sky surface downwelling SW and LW irradiance measurement is 6% or 10 W m−2 (whichever is larger) 
and 2.5% or 4 W m−2 (Stoffel, 2005). The root-mean-square error (RMSE) of clear-sky fluxes approximately 
doubles the measurement uncertainty of the total-sky ones. These estimates begin from September 2003 
and end between 2013 and 2017 for the SGP, NSA, and TWP sites, and from February 2013 to October 2019 
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for the ENA site. They are archived on a temporal resolution of one minute and have been averaged to 
hourly data. For the total-sky fluxes in this study, only measurements that passed quality control tests are 
considered.

2.2.2.  Temperature and Humidity Products From ARMBEATM

ARM Best Estimate (ARMBE; Xie et al., 2010) is a summary product of many ARM observations and is 
designed for climate model evaluation. This value-added product merges data from a variety of ARM in-
struments, performs quality control checks, and averages parameters to a temporal resolution of one hour. 
The ARM atmospheric measurements of interest in this study are the hourly surface and air temperature 
(K) and relative humidity (%) from the subset of ARM Best Estimate Atmospheric Measurement (ARM-
BEATM) with a period of January 1998 – December 2011 for SGP, January 1998 – December 2010 for the 
NSA and TWP sites, and January 2014 – December 2018 for ENA. Note that valid ARMBEATM measure-
ments of air temperature and relative humidity are archived only on a few hours (of the daily standard 
24 hr) each day and may not fully represent the diurnal cycle. The hours can be different for different ARM 
sites. To minimize the potential impact of diurnal variation, we choose those hours with the largest number 
of valid measurements of non-zero temperature and relative humidity according to a composite distribution 
(not shown) of the 24-hr diurnal cycle: 6:00, 12:00, 18:00, and 24:00 for the SGP site; 6:00, 18:00, and 24:00 
for NSA; 12:00 and 24:00 for TWP C1, C2, and C3; and 6:00, 12:00, 18:00, and 24:00 for ENA. The total sam-
ples of valid and non-zero observations for each site can be found in Table S1 in Supporting Information S1. 
At SGP C1, TWP C1, TWP C3, and ENA C1, the percentage differences among the number of samples of 
the selected hours are very small (Table S1 in Supporting Information S1) and thus the impact of diurnal 
variation can be neglected for these four sites. For NSA C1 and TWP C1, on average, a certain hour can have 
3.8 (at NSA C1) and 1.6 (at TWP C1) more samples than the other hours per month. Even though, the po-
tential impact of diurnal variation due to such a sampling bias of the monthly averaged air temperature or 
relative humidity should be small at these two sites. The ARMBEATM product does not include uncertainty 
estimates on the data values. According to Climate Science for a Sustainable Energy Future Atmospheric 
Radiation Measurement Best Estimate (CSSEFARMBE; Riihimaki et al., 2012), the uncertainty of surface 
temperature at SGP C1 is 0.29 K and surface relative humidity is 1.52%.

2.3.  Observed TOA Radiative Fluxes From Clouds and Earth's Radiant Energy System (CERES)

For total-sky and clear-sky TOA fluxes, we use the hourly averaged observed fluxes from the CERES (Wiel-
icki et al., 1996) Synoptic 1° (SYN1deg-1Hour Edition4.1; Doelling et al., 2016) product. The CERES instru-
ments are presently flying on National Aeronautics and Space Administration (NASA)'s Terra, Aqua, and 
Suomi-National Polar-Orbiting Partnership satellites. The CERES observed total-sky fluxes are derived by 
combining Terra and Aqua CERES-observed temporally interpolated TOA radiative fluxes. Hourly radianc-
es from geostationary (GEO) imagers are converted to broadband GEO TOA fluxes via empirical regression 
and angular distribution models (Loeb et al., 2005), which are used to more accurately model the variability 
between CERES observations. The CERES/GEO flux observations are spatially averaged into 1° gridded 
regions. Clear-sky fluxes are computed hourly for each 1° gridded region by removing clouds based on the 
CERES project's Moderate Resolution Imaging Spectroradiometer (MODIS) imager cloud retrievals (Minnis 
et al., 2011). The hourly CERES SYN1deg product is archived on a 1° × 1° global grid from March 2003 to 
the present. In this study, the total-sky and clear-sky TOA fluxes at the nearest grid point to the actual loca-
tion of each ARM site represent the TOA fluxes used for that ARM site.

2.4.  ERA5 Reanalysis

The ERA5 reanalysis (Hersbach et al., 2020) is a state-of-the-art global atmospheric reanalysis produced 
by the European Centre for Medium-Range Weather Forecasts (ECMWF). It replaces its predecessor 
ERA-Interim (Dee et al., 2011). This data set is archived on a global grid with a very high spatial resolution 
(0.25° × 0.25°) and 37 pressure levels, currently available for January 1979 to the present. The hourly model 
output of ERA5 is generated by an operational Integrated Forecast System (IFS CY41r2) with TL639 spec-
tral resolution (31 km) and 137 vertical levels up to 0.01 hPa. This system uses a 12-hourly ensemble-based 
4-dimensional variational assimilation (4D-Var ensemble) that enables improved analyses by assimilating 
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the model forecast fields, vast amounts of historical satellite and in-situ observations, and forcings from the 
improved radiation system and sea-surface boundary conditions. The biases of satellite-measured radiance 
and ground-based radar-gauge composites, total column ozone, aircraft temperature, and surface pressure 
observations are automatically corrected via a variational bias correction scheme. Additional information 
can be found on the ERA5 website (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5). The ERA5 outputs used in this study are monthly averaged surface and air temperature, relative 
humidity, and total-sky and clear-sky SW and LW fluxes at the SFC and TOA. As noted in Section  2.1, 
the temperature and humidity profiles used to calculate fluxes in the 2B-FLXHR-LIDAR algorithm came 
from the ECMWF-based analyses. Therefore, it is particularly relevant to use ERA5 for this study, assuming 
the ECMWF product in 2B-FLXHR-LIDAR and ERA5 are similar. The ERA5 surface albedo is defined as 
monthly upwelling surface clear-sky flux divided by monthly downwelling surface clear-sky flux. To be 
compared with the ARM observations, the ERA5 fluxes and state variables are area-averaged over a 5° × 5° 
domain with the nearest grid point to the actual location of each ARM site being at the center.

3.  Methodology
3.1.  Monthly Flux Anomalies From ARM, CERES and ERA5

The monthly averaged fluxes of ERA5 are directly downloaded from the ERA5 website and are averaged us-
ing all the daily 24 hr to incorporate the full diurnal cycle. The flux anomalies are computed by subtracting 
the monthly flux climatology of the period of April 2006 – September 2009 (January 2014 – December 2018) 
from the monthly averaged flux for the SGP, NSA, and TWP sites (the ENA site).

To calculate the monthly anomalies of SFC fluxes from ARM and TOA fluxes from CERES, we first compute 
daily averaged fluxes based on those selected hours of air temperature and relative humidity from ARM-
BEATM described in Section 2.1. Monthly averaged fluxes are averaged from these daily ones. Only those 
months with more than 20 days of valid data for each selected hour are considered in this study. Monthly 
flux anomalies of ARM and CERES are calculated by subtracting the monthly flux climatology of the period 
of April 2006 – September 2009 (January 2014 – December 2018) from the monthly averaged flux for the 
SGP, NSA, and TWP sites (the ENA site).

3.2.  Monthly Kernel-Estimated Changes in Radiative Fluxes

Following Huang et al. (2007) and Soden et al. (2008), the monthly kernel-estimated changes in total-sky 
LW flux at the SFC or TOA can be expressed as:

            LW LW LW LWΔLW Δ Δ Δ Δi i i i
a sC T Ti ia sR K T K K T� (1)

 LWΔ CE R  is the LW cloud variability term in this study, defined as:

      
         

0LW LW 0 LW

LW 0 LW LW 0 LW

Δ ΔLW ΔLW Δ

Δ Δ

i i i
aC T Ti a a

i i i
sT Ti s s

R K K T

K K K K T  

    

   




� (2)

in which 
0ΔLWE  stands for observed or reanalyzed clear-sky LW flux and ΔLWE  for observed or reanalyzed 

total-sky LW flux.   0ΔLW ΔLWE  equals the changes in LW cloud radiative effect (dCRE; Cess et al., 1990). 
In both Equations 1 and 2, i is an index of vertical levels,  LWTaE K  for the total-sky LW air temperature ker-
nel (W/m2/K⋅100 hPa) from CloudSat,   LWE K  for the total-sky LW water vapor kernel (W/m2/K⋅100 hPa), 

 LWTsE K  for the total-sky LW surface temperature kernel (W/m2/K), Δ aE T  for the monthly air temperature 
kernel input (unit in K), Δ sE T  the monthly surface temperature anomaly (unit in K), and ΔE  for the monthly 
water vapor kernel input (unit in K).  0 LW

i
TaE K  in Equation 2 stands for the clear-sky LW air temperature 

kernel (W/m2/K⋅100 hPa),  0 LWE K  for the clear-sky LW water vapor kernel (W/m2/K⋅100 hPa), and  0 LWTsE K  
for the clear-sky LW surface temperature kernel (W/m2/K). The   0 Δx xE K K x term is referred to as the xE K  
cloud mask.

In this study, Δ aE T  and ΔE  are defined as below, following Sanderson and Shell (2012):

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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  ΔΔ
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   
   

ln ,RH ln ,RH ΔΔ
100ln 1, ln , /KRH RH

a a
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       

          

� (4)

aE T  is monthly air temperature, RH the relative humidity, and w the specific humidity calculated using the air 
temperature and relative humidity in brackets. The overbar represents the monthly climatology. The division 

by K in the denominator of the term        ln , ln , / ln 1, ln , /KRH RH RHa a a aw T RH w w wT T T                     
 

means that this term has a unit of Kelvin. Monthly averaged air temperature or relative humidity of ARM 
are computed from the daily average of air temperature or relative humidity of the selected hours described 
in Section 2.1. For ERA5, the monthly temperature and humidity are averaged for the daily 24 hr.

Similarly, the kernel-estimated changes of total-sky SW fluxes at the SFC or TOA can be written as:

         SW SW SWΔSW Δ Δ Δi i
C iR K K� (5)

 SWΔ CE R  is the SW cloud variability term, defined as:

                     0SW SW 0 SW SW 0 SWΔ ΔSW ΔSW Δ Δi i i
C iR K K K K� (6)

where 
0ΔSWE  stands for observed or reanalyzed clear-sky SW flux and ΔSWE  for observed or reanalyzed to-

tal-sky SW flux.   0ΔSW ΔSWE  equals the changes in SW dCRE.   SW
iE K  here is the total-sky SW water vapor 

kernel (W/m2/K⋅100 hPa),   SWE K  the total-sky surface albedo kernel (W/m2/%),  0 SW
iE K  here is the clear-sky 

SW water vapor kernel (W/m2/K⋅100 hPa),  0 SWE K  the clear-sky surface albedo kernel (W/m2/%), ΔE  the 
monthly surface albedo anomaly (%) and ΔE  is from Equation 4. The monthly surface albedo is defined as 
monthly upwelling surface clear-sky flux divided by downwelling surface clear-sky flux. Monthly averaged 
surface albedo of ARM and CERES is computed based on the daily average of selected hours described in 
Section 2.1.

The monthly clear-sky kernel-estimated changes in LW and SW fluxes at the SFC or TOA can be expressed 
as:

         0 0 LW 0 LW 0 LWΔLW Δ Δ Δi i i i
a sT Ti ia sK T K K T� (7)

      0 0 SW 0 SWΔSW Δ Δi i
iK K� (8)

Note that we do not account for the instantaneous radiative forcing (IRF) in the calculation of the kernel-es-
timated changes in the total-sky and clear-sky SW and LW fluxes in Equations 1, 5, 7, and 8. The common 
approach to diagnose IRF is to subtract the sum of kernel-derived state-variable-dependent flux anomalies 
(e.g., ΔLWE  in Equation 1 and ΔSWE  in Equation 5) from the total flux anomalies (e.g., from CERES or ARM). 
Adding the IRF to Equations 1, 5, 7, and 8 will result in the actual total flux anomalies and does not con-
tribute to our goal of comparing these two sets of flux anomalies. In addition, the IRF plays a secondary 
role in the interannual variability of the observed TOA CERES fluxes, compared with the kernel-estimated 
radiative responses during 2003–2018 (Kramer et al., 2021).

4.  Results
4.1.  Validation of CloudSat Kernels With ERA5 Reanalysis

The CloudSat radiative kernels are first assessed with the spatially and temporally consistent ERA5 reanal-
ysis products before the approximate decomposition of the contributions to changes in ARM/CERES-ob-
served radiative fluxes. The GCM-based ERA5 reanalysis combines an abundance of observations and 
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measurements with model information and provides a dynamically and thermodynamically consistent es-
timate of the global climate state at each hourly time step. Its high spatial resolution of 0.25° × 0.25° means 
that the distance between the closest grid point to an ARM site and the actual location of that ARM site is 
less than 50 km. One caveat of using the ERA5 reanalysis here is that the potential changes in assimilated 
observations can produce artificial variability in the ERA5 kernel-estimated changes in fluxes.

Monthly kernel-estimated changes in total-sky SW and LW fluxes calculated using the ERA5 state varia-
bles are shown in Figures 1 and 2 for the six ARM sites: SGP C1, NSA C1, TWP C1, TWP C2, TWP C3, and 
ENA C1. Table 1 documents the mean absolute bias (Abs Bias), root mean square error (RMSE), RMSE 
normalized by the standard deviation of the monthly anomalies of ERA5 fluxes (RMSE*), and correlation 
coefficient of these kernel-estimated changes in comparison with the monthly anomalies of SW and LW 
fluxes obtained from ERA5. Note, the Abs Bias and RMSE of the total-sky SW and LW flux results are equal 
to those of the clear-sky SW and LW flux ones in Table S2 in Supporting Information S1. When Equation 2 
is substituted in Equation 1, the error of kernel-estimated total-sky flux anomalies is identical to the one of 
kernel-estimated clear-sky flux anomalies. The correlation coefficients of the total-sky and clear-sky results 
can be different, which measure how well the kernel-estimated flux anomalies co-vary with the reanalyzed/
observed flux anomalies.

To understand how using only one year (the Year 2009 in this study) of radiative kernels impacts the biases 
of multi-year kernel-estimated flux anomalies, which stems from the inability of these kernels to represent 
the interannual variability, we show the maximum RMSE as a function of the average length (ranging 
from one month to multiple years) for each site in Figure S1 in Supporting Information S1. Overall, for the 
lengths that are longer than 13 months, the maximum RMSE decreases as the length of months increases. 
This implies that the biases related to using only one year of kernels can be reduced if longer periods are 
used to compare the kernel-estimated flux anomalies with the observed or reanalyzed ones. However, Fig-
ure S1 in Supporting Information S1 exhibits that the RMSEs of the Year 2009 still tend to be smaller than 
those of the period of 09/2003-12/2010. The percentage errors of Abs Bias and RMSE from the Abs Bias or 
RMSE for the Year 2009 are shown in Table 1.

Figure 1.  A comparison of the time series of monthly kernel-estimated changes in total-sky shortwave (SW) fluxes (red) with monthly anomalies of total-sky 
SW fluxes extracted from ERA5 (black) at surface (SFC; a–f) and top-of-atmosphere (TOA; g–l) for the six ARM sites: SGP C1, NSA C1, TWP C1, TWP C2, TWP 
C3, and ENA C1. The kernel-estimated responses are calculated using ERA5 water vapor and surface albedo.
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4.1.1.  SGP C1

Located in the midlatitude and midcontinent, ARM SGP is the largest and most extensive climate research 
field facility in the world. This central site (SGP C1) experiences large seasonal variations in both tempera-
ture and humidity and a great range of surface energy fluxes and cloud properties. Figures 1a and 1g, Fig-
ures 2a and 2g, Table 1, and Table S2 in Supporting Information S1 show that the kernel-estimated changes 
in both total-sky and clear-sky SW and LW fluxes calculated with the ERA5 state variables are highly corre-
lated (r > 0.9 at a significance level of 99%) with the monthly anomalies of ERA5 fluxes at the SFC and TOA 
and in the atmospheric column (ATM, equaling to TOA minus SFC). The RMSEs of SW and LW fluxes are 
smaller than 2.6 W/m2. The relatively small percentage errors from the Year 2009 (Table 1 and Figure S1 in 
Supporting Information S1) suggest that the lack of kernel interannual variability representation is not a 
significant contributing factor to the kernel-estimated errors of SW and LW flux anomalies at the SFC and 
TOA at SGP C1.

4.1.2.  NSA C1

The NSA central site is located at the edge of the Arctic Ocean, where the sea ice, land ice, and permafrost 
are highly sensitive to the changes in energy fluxes. The climate at NSA is characterized by low tempera-
tures and low humidity. Most Arctic clouds are found in the lower troposphere, where they interact with 
strong near-surface temperature inversions. Due to very small insolation during the northern hemisphere 
winter season at NSA, the changes in SW fluxes are near zero during winter and only become large in sum-
mer. The kernel-estimated changes in total-sky and clear-sky SW fluxes at the SFC and TOA show almost 
perfect agreement with the ERA5 SW flux anomalies (  0.99;E r  Figures 1b and 1h, Table 1, and Table S2 in 
Supporting Information S1). For total-sky LW fluxes, the kernel-estimated changes exhibit a lower correla-
tion with the ERA5 LW flux anomalies (  0.81E r  ; Table 1). The correlation of kernel-estimated changes in 
clear-sky LW fluxes is even lower (Table S2 in Supporting Information S1), suggesting that the water vapor 
or temperature-related changes could contribute more to the bias than the cloud-related ones. Similar to the 
SGP results, the lack of kernel interannual variability representation seems to not contribute much to the 
kernel-estimated errors at NSA (Table 1 and Figure S1 in Supporting Information S1).

Figure 2.  Same as Figure 1, but for monthly kernel-estimated changes in total-sky longwave (LW) fluxes (red) and monthly anomalies of total-sky LW fluxes 
extracted from ERA5 (black). The kernel-estimated responses are calculated using ERA5 water vapor and air and surface temperature.
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4.1.3.  Three TWP Sites

The three TWP sites are located in the tropical western Pacific region roughly 2000 km apart. According to 
Long et al. (2016), the TWP C1 site (Manus) primarily experiences an oceanic climate, whose variability of 
convective activities is driven by the Madden-Julian oscillation (MJO; Madden & Julian, 1994). The TWP C2 
site (Nauru) is strongly influenced by the variability associated with El Niño-Southern Oscillation (ENSO). 
The convection and cloudiness over this site are enhanced during El Niño events and suppressed during La 
Niña events. Figures 1d and 2d exhibit an increase of SFC SW flux anomalies and a decrease of SFC LW flux 
anomalies during the 2008–2009 and 2010–2011 La Niña events, corresponding to a reduction of convective 
activities during these periods. TWP C3 (Darwin) is a coastal site. Rather than being driven by land-sea 
circulations and associated coastal convection, the convection over TWP C3 is dominated by the annual 
Australian monsoon. For the total-sky results, the kernel-estimated changes in both SW and LW radiative 
fluxes at the three TWP sites almost perfectly agree with the ERA5 SW and LW flux anomalies (  0.95E r  ; 
Figures 1 and 2, Table 1). The RMSEs are smaller than 3.5 W/m2. The lack of kernel interannual variability 
representation contributes to the kernel-estimated errors more significantly at the three TWP sites (espe-
cially at TWP C1 and C3) than at SGP and NSA (Table 1 and Figure S1 in Supporting Information S1).

Abs Bias

RMSE

RMSE*

Corr

SW SFC SW TOA SW ATM LW SFC LW TOA LW ATM

SGP C1

0.93 (31%) 0.48 (4%) 0.68 (89%) 1.94 (-8%) 0.63 (21%) 1.81 (-16%)

1.29 (43%) 0.61 (5%) 0.98 (113%) 2.59 (-8%) 0.79 (27%) 2.35 (-11%)

0.09 0.05 0.45 0.28 0.09 0.20
1.00 1.00 0.92 0.98 1.00 0.98

NSA C1

1.10 (3%) 0.88 (19%) 1.22 (21%) 7.34 (8%) 2.12 (22%) 8.71 (15%)

1.76 (-4%) 1.36 (13%) 1.80 (29%) 8.71 (8%) 2.67 (28%) 10.40 (16%)

0.17 0.14 1.49 1.10 0.61 1.04
0.99 0.99 0.59 0.66 0.81 0.67

TWP C1

0.56 (40%) 0.21 (40%) 0.42 (45%) 0.76 (10%) 0.60 (100%) 0.61 (-31%)

0.70 (46%) 0.27 (59%) 0.52 (44%) 0.89 (9%) 0.86 (126%) 0.78 (-27%)

0.04 0.02 0.38 0.23 0.05 0.06
1.00 1.00 0.98 0.99 1.00 1.00

TWP C2

0.72 (-5%) 0.15 (50%) 0.76 (-6%) 2.27 (18%) 2.40 (-18%) 1.62 (-13%)

0.96 (2%) 0.18 (38%) 1.01 (3%) 3.16 (32%) 3.49 (-3%) 2.22 (-20%)

0.04 0.01 0.42 0.35 0.15 0.14
1.00 1.00 0.93 0.96 0.99 0.99

TWP C3

0.69 (38%) 0.25 (79%) 0.69 (44%) 2.24 (54%) 1.32 (116%) 1.63 (47%)

0.92 (59%) 0.33 (83%) 0.87 (53%) 2.72 (63%) 1.67 (129%) 2.17 (68%)

0.05 0.02 0.35 0.29 0.10 0.13
1.00 1.00 0.98 0.99 1.00 0.99

ENA C1

0.43 0.35 0.30 1.18 0.57 1.12

0.54 0.45 0.37 1.47 0.69 1.38

0.07 0.06 0.35 0.37 0.14 0.22
1.00 1.00 0.95 0.95 0.99 0.98

Note. The kernel-estimated changes in fluxes are calculated using ERA5 state variables. The numbers in each cell from top to bottom stand for: mean absolute 
bias (Abs Bias; unit: W/m2), root mean square error (RMSE; unit: W/m2), RMSE normalized by standard deviation of monthly anomalies of fluxes from ERA5 
(RMSE*; in bold), and correlation coefficient (Corr; in shade). All the correlation coefficients pass a significance level of 99%. The percentage in the parentheses 
for Abs Bias or RMSE represents the percentage error from the Abs Bias or RMSE for Year 2009 only. The percentage errors are not shown for the ENA C1 site 
due to the fact that this site does not have any data during 2009.

Table 1 
Statistics of the Comparison Between Monthly Anomalies of Total-Sky Shortwave (SW) and Longwave (LW) Fluxes Extracted From ERA5 and Monthly Kernel-
Estimated Changes in Total-Sky SW and LW Fluxes at Surface (SFC), Top-Of-Atmosphere (TOA), and in the Atmospheric Column (ATM; Which Represents TOA 
Minus SFC) for the Six ARM Sites: SGP C1, NSA C1, TWP C1, TWP C2, TWP C3, and ENA C1 During the Periods Shown in Figure 1
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4.1.4.  ENA C1

The ENA site is a relatively newer ARM site and is characterized by marine stratocumulus clouds. Given the 
fact that low cloud radiative feedback is a leading factor causing the large spread in equilibrium climate sen-
sitivity (ECS) (Andrews et al., 2012; Bony & Dufresne, 2005; Zelinka et al., 2012b), it is important to evaluate 
whether the CloudSat kernels are capable of reconstructing fluxes anomalies in the presence of boundary 
layer clouds. Figures 1f and 1l, Figures 2f and 2l, and Table 1 show that the kernel-estimated changes in 
total-sky SW and LW fluxes calculated with the ERA5 state variables at ENA are highly correlated (r > 0.95 
at a significance level of 99%) with the monthly anomalies of ERA5 total-sky fluxes at the SFC and TOA 
and in ATM.

Overall, these comparison results of the ERA5 flux anomalies validate that the CloudSat radiative kernels 
are useful to reconstruct the interannual variability in radiative fluxes for the six ARM sites. As shown in the 
scatterplots of Figure 3, the kernel-estimated changes in radiative fluxes calculated with the ERA5 state var-
iables are almost perfectly correlated with the ERA5 flux anomalies (with RMSEs being smaller than 3.5 W/
m2), except for the kernel-estimated LW flux anomalies at NSA. Note, the 2B-FLXHR-LIDAR used to de-
velop the CloudSat kernels incorporate temperature and humidity profiles from a product similar to ERA5, 
which could also contribute to the strong correlations in these ERA5 results, specifically. The kernel-esti-
mated changes in SW fluxes exhibit smaller RMSE and higher correlation than in LW fluxes (Table 1).

4.2.  Evaluation of CloudSat Kernels With ARM and CERES Observations

Compared with the ERA5 scatterplots in Figure 3, the scatterplots of kernel-estimated changes in total-sky 
radiative fluxes calculated using ARM observed state variables versus the ARM/CERES-observed flux 
anomalies (Figure 4) look more scattered. Table 2 also shows lower correlation coefficients than Table 1 
in most cases. The normalized RMSEs of the ARM kernel-estimated changes in fluxes are generally more 
than twice as large compared to the ERA5-based values. These results indicate that the CloudSat radiative 
kernels are less skilled in reconstructing observed changes in radiative fluxes at some locations than others. 
In this section, we also present the contribution to the changes in radiative fluxes from each state variable 
(shown as the standard deviation; Table 3).

4.2.1.  SGP C1

At SGP, the ARM kernel-estimated changes in total-sky SW and LW fluxes at the SFC and TOA (Figures S2a 
and S2g and Figures S3a and S3g in Supporting Information S1) show a strong correlation (  0.9E r  ) with the 
ARM/CERES-observed flux anomalies (Table 2), except for LW flux at the SFC (r ∼ 0.72). For SW fluxes, 
the changes associated with clouds dominate the kernel-estimated changes at both the SFC and TOA (Fig-
ures 5a and 5m), with a standard deviation being comparable with one of the ARM/CERES-observed flux 
anomalies (Table 3). Surface albedo plays the second most important role in these changes, followed by wa-
ter vapor. On closer inspection, dCRE (Figure S4 in Supporting Information S1) accounts for most changes 
of the cloud-related flux anomalies rather than the SW cloud mask terms. These aforementioned SW results 
are similar to the ERA5 ones in Figures S5, S6, and Table S3 in Supporting Information S1, indicating that 
the differences between the kernel-estimated and observed changes in the total-sky SW fluxes at SPG are a 
result of dCRE and surface albedo-related kernel-estimated changes.

Regarding the total-sky LW fluxes, the ARM/CERES results (Figure 6, Figure S7 in Supporting Informa-
tion S1, and Table 3) resemble the ERA5 ones in Figures S8, S9, and Table S3 in Supporting Information S1. 
Clouds still contribute the most to the kernel-estimated anomalies at both SFC and TOA and dCRE dom-
inates the cloud-related changes in total-sky LW flux anomalies. However, as the correlation between the 
ARM-estimated clear-sky LW flux anomalies and kernel-estimated changes in clear-sky LW flux at the SFC 
is also not high (r ∼ 0.71; Table S4 in Supporting Information S1), the bias of the kernel-estimated changes 
in SFC LW flux are also related to the temperature- or humidity-related kernel responses besides the cloud 
mask.

4.2.2.  NSA C1

Table 2 exhibits a high correlation (r > 0.9) between ARM kernel-estimated changes in total-sky SW fluxes 
and the ARM/CERES-observed total-sky SW flux anomalies at the SFC and TOA and in ATM at NSA C1. 
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Contrary to the ERA5-based values (Figure S5 and Table S3 in Supporting Information S1), the contribution 
from the cloud is smaller than surface albedo in ARM/CERES (Figure 5 and Table 3). The decomposition of 
the cloud-related changes in ARM/CERES-observed total-sky SW flux at the SFC (Figure S4 in Supporting 
Information S1) shows that the variance of dCRE is larger than the one of surface albedo cloud mask. The 
variance of the water vapor cloud mask is almost zero. For the cloud-related changes in ARM/CERES-ob-
served total-sky SW flux at the TOA, the variance of SW dCRE is comparable with the one of surface albedo 

Figure 3.  Scatter plots for monthly anomalies of total-sky shortwave (SW) and longwave (LW) fluxes from ERA5 
versus monthly kernel-estimated changes in total-sky SW and LW fluxes at SFC and TOA calculated using the ERA5 
state variables for the six ARM sites.
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cloud mask (Figure S4 in Supporting Information  S1). Both are much smaller than the variance of the 
observed TOA SW flux anomalies. However, the variances of ERA5 dCRE and the ERA5 TOA SW flux 
anomalies are much more comparable (Figure S6 in Supporting Information S1).

These results suggest that the larger RMSE of the CloudSat kernels in reconstructing the observed SW flux 
anomalies using the ARM state variables at NSA may stem from the interannual variations in the cloud 
masking of the SW fluxes, which strongly depend on the covariability of clouds and surface ice and snow 

Figure 4.  Scatter plots for monthly anomalies of observed total-sky shortwave (SW) and longwave (LW) fluxes from 
ARM (SFC) and CERES (TOA) versus monthly kernel-estimated changes in total-sky SW and LW fluxes calculated 
using the ARM state variables at SFC and TOA for the six ARM sites.
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cover. Sledd and L’Ecuyer (2019, 2020) found that clouds have substantially reduced the ice-albedo feedback 
(reduction in sea ice lowers the surface albedo and increases SW absorption, which further reduces sea ice) 
in the Arctic by masking the effects of sea ice variability and total-sky trends (emerged from interannual 
variability) in Arctic SW flux absorption take longer to detect than clear-sky trends. The precise relationship 
between the TOA and SFC SW fluxes and surface albedo depends critically on the cloud conditions during 
the years used to derive the radiative kernels. Given the fact that the CloudSat radiative kernels were de-
rived from only one year (the Year 2009) of observation, the anomalous cloud, water vapor, snow/sea ice 
conditions, and their co-variations in the vicinity of the NSA site in that year may not be representative 
of another. Although the interannual variability seems to play an insignificant role (e.g., <5% for SFC SW 
and <20% for TOA SW) in kernel-estimated errors at NSA in ERA5 (Table 1), it actually can contribute to 
roughly 50% of the kernel-estimated errors in the ARM-observed results. Additionally, some complications 
of the interannual covariability among albedo, clouds, and radiative fluxes are not present in the reanalyzes 
(Sledd & L’Ecuyer, 2020).

For total-sky LW fluxes, adding the cloud component does not significantly affect the correlation between 
the changes in the ARM kernel-estimated fluxes and the ARM-observed ones (Table  2 and Table S4 in 
Supporting Information  S1). Compared with the ERA5 results (Table  1) in Section  4.1.2, the ARM ker-
nel-estimated changes in LW fluxes correlate better with the ARM/CERES-observed LW flux anomalies at 
the SFC and TOA and in the ATM. A similar conclusion applies to the clear-sky condition (Tables S2 and S4 
in Supporting Information S1). The decomposition of the kernel-estimated changes in LW fluxes (Figure 6, 

Abs Bias

RMSE

RMSE*

Corr

SW SFC SW TOA SW ATM LW SFC LW TOA LW ATM

SGP C1

3.35 0.98 3.62 5.24 1.39 5.13

5.03 1.24 5.28 8.02 1.75 8.01

0.34 (278%) 0.11 (120%) 0.81 (80%) 0.76 (171%) 0.20 (122%) 0.67 (235%)
0.94 1.00 0.63 0.72 0.98 0.79

NSA C1

2.72 2.00 3.15 3.80 1.47 4.31

4.51 3.29 5.26 4.81 2.02 5.66

0.77 (353%) 0.19 (36%) 0.33 (-78%) 0.50 (-55%) 0.54 (-11%) 0.52 (-50%)
0.90 0.99 0.94 0.89 0.87 0.89

TWP C1

2.97 0.77 3.16 3.45 2.97 5.49

4.08 0.97 4.31 5.33 4.82 9.38

0.13 (225%) 0.04 (100%) 0.24 (-37%) 1.32 (474%) 0.33 (560%) 0.77
(1183%)

0.99 1.00 0.98 0.55 0.96 0.80

TWP C2

6.70 0.54 6.85 4.49 4.04 6.78

9.19 0.75 9.49 6.39 6.33 11.28

0.27 (575%) 0.02 (100%) 0.61 (45%) 0.74 (111%) 0.28 (87%) 0.76 (443%)
0.97 1.00 0.87 0.85 0.97 0.82

TWP C3

4.28 1.00 4.43 3.81 3.17 3.75

5.72 1.20 5.83 5.11 4.02 4.94

0.23 (360%) 0.09 (350%) 0.36 (3%) 0.57 (97%) 0.24 (140%) 0.31 (138%)
0.98 1.00 0.95 0.91 0.99 0.95

ENA C1

1.15 0.78 1.43 3.44 1.16 4.05

1.48 0.94 1.73 4.35 1.45 5.14

0.19 (171%) 0.11 (83%) 0.22 (-37%) 0.90 (143%) 0.30 (114%) 0.80 (264%)
0.98 0.99 0.98 0.72 0.96 0.73

Note. The kernel-estimated changes in fluxes are calculated using ARM-observed state variables. The four numbers in each cell from top to bottom stand for: 
mean absolute bias (Abs Bias; unit: W/m2), RMSE (unit: W/m2), RMSE normalized by standard deviation of monthly anomalies of fluxes from ARM/CERES 
(RMSE*; in bold), and correlation coefficient (Corr; in shade). All the correlation coefficients pass a significance level of 99%, except for SFC and ATM SW fluxes 
at NSA C1. The percentage in the parentheses for RMSE* represents the percentage error from ERA5 RMSE* in Table 1.

Table 2 
Statistics of the Comparison Between Monthly Anomalies of Total-Sky SW and LW Fluxes Extracted From ARM (for SFC)/CERES (for TOA) and Monthly Kernel-
Estimated Changes in Total-Sky SW and LW Fluxes at SFC, TOA, and in ATM for the Six ARM Sites During the Periods Shown in Figure 2
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Figure S8 in Supporting Information S1, Table 3, and Table S3 in Supporting Information S1) shows that the 
variance of air-temperature-related changes is the largest among the four LW kernel state variables in ERA5 
and much larger than the one in ARM, suggesting that the bias in air-temperature-related kernel responses 
may be the culprit for the low correlation in ERA5.

4.2.3.  Three TWP Sites

The ARM kernel-estimated changes in total-sky SW fluxes at these three TWP sites exhibit very a strong cor-
relation (  0.97E r  ) with the observed flux anomalies (Table 2), although the normalized RMSEs are much 
larger than in ERA5. Almost all of these changes are contributed from clouds (Figure 5 and Table 3), par-
ticularly dCRE (Figure S4 in Supporting Information S1). The ARM kernel-estimated responses in total-sky 
LW flux at the SFC exhibit moderate to high correlation, with the lowest being at TWP C1 (  0.55E r  ) and the 
highest at TWP C3 (  0.91E r  ). Unlike the ERA5 results, in which the water vapor dominates the kernel-esti-
mated changes in total-sky SFC LW flux, the ARM results show notable contributions from surface temper-
ature, air temperature, and clouds (particularly dCRE and water vapor cloud mask; Figure S7 in Supporting 
Information S1), besides water vapor (Table 3). In addition, the total-sky results (Table 2) exhibits a higher 
correlation than the clear-sky ones (Table S4 in Supporting Information S1). This implies that the biases of 
kernel-estimated changes in SFC total-sky LW flux are related to temperature or humidity, in addition to 
dCRE and cloud mask. The ARM kernel-estimated changes in total-sky LW flux at the TOA correlate highly 
(  0.95E r  ) with the CERES-observed flux anomalies (Table 2), and clouds (mostly dCRE and water vapor 
cloud mask) contribute the most to the changes.

4.2.4.  ENA C1

For the ENA site, the ARM kernel-estimated changes in total-sky SW fluxes at the SFC and TOA are highly 
correlated (  0.98E r  ) with the ARM/CERES-observed flux anomalies (Figures S2f and S2l in Supporting 

Standard 

deviation

Kernel 

decomp
SGP C1 NSA C1 TWP C1 TWP C2 TWP C3 ENA C1

SW SFC

14.41 5.88 31.02 33.88 25.12 7.77

0.86 0.49 0.72 1.86 1.59 0.58

3.65 7.47 1.00 3.40 2.21 2.96

14.57 5.13 30.91 31.69 25.80 6.97

SW TOA

11.78 17.50 22.28 35.58 13.33 8.35

0.41 0.47 0.36 0.53 0.53 0.17

2.39 11.99 0.12 0.04 0.71 0.13

11.49 5.55 22.09 35.88 13.13 8.40

LW SFC

10.58 9.53 4.03 8.59 9.03 4.82

3.91 1.44 1.93 5.36 7.33 2.05

2.73 3.91 3.14 3.12 0.76 1.22

5.13 4.11 1.24 1.84 3.73 3.15

7.20 6.31 4.18 6.67 4.23 4.64

LW TOA

8.81 3.71 14.46 22.50 16.95 4.79

1.87 1.00 1.84 5.26 5.28 1.16

2.20 3.34 3.72 5.39 1.20 1.69

1.53 1.02 0.08 0.24 0.98 0.75

6.59 2.56 13.47 19.11 14.37 4.23

Note. The SW kernel-estimated responses at SFC and TOA are decomposed into water vapor ( E K  ), surface albedo ( E K  ), and cloud ( CE K  ) kernel-estimated 
responses. The LW kernel-estimated responses at SFC and TOA are decomposed into water vapor ( E K  ), air temperature ( TaE K  ), surface temperature ( TsE K  ) and 
cloud ( CE K  ) kernel-estimated responses.

Table 3 
Standard Deviation of Monthly Anomalies of Total-Sky SW and LW Fluxes Directly From ARM (for SFC)/CERES (for TOA) (E R , in Shade) and Each Kernel-
Estimated Responses of Total-Sky SW and LW Fluxes Calculated Using the Corresponding ARM-Observed State Variable at SFC and TOA for the Six ARM Sites 
During the Periods Shown in Figure 2
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Information S1 and Table 2). Similar to the SGP and TWP SW results, the majority of the kernel-estimated 
changes at the SFC and TOA are contributed by the cloud component (dCRE; Table 3, Table S3 in Support-
ing Information S1, Figure 5, and Figure S4 in Supporting Information S1). Even though the water vapor 
and surface albedo-related changes in TOA SW fluxes are biased as in the clear-sky results (Tables S2 and 
S4 in Supporting Information S1), their variances are too small to significantly lower the correlation of to-
tal-sky TOA SW fluxes (Table 3 and Table S3 in Supporting Information S1).

The comparison between the monthly anomalies of ARM-observed total-sky SFC LW flux and kernel-es-
timated changes in total-sky SFC LW flux shows a moderate correlation (r ∼ 0.72; Table 2). Clouds (dCRE 
and water vapor cloud mask) play the most important role in determining the kernel-estimated changes in 
LW SFC flux in both ARM and ERA5 results (Table 3, Table S3 in Supporting Information S1, Figure 6, and 
Figure S7 in Supporting Information S1). The variance associated with surface temperature is significantly 
larger in ARM than in ERA5 (Table 3 and Table S3 in Supporting Information S1). The moderate correlation 
indicates that the kernels might not be able to fully reconstruct the interannual variability of the observed 
SFC LW flux anomalies in the presence of marine boundary clouds. The ARM kernel-estimated changes in 
total-sky LW flux at the TOA correlate highly (  0.95E r  ) with the CERES-observed flux anomalies (Table 2), 
and clouds (dCRE) contribute the most to the changes.

In summary, these results offer compelling evidence that the CloudSat radiative kernels are capable of re-
constructing observed radiative fluxes anomalies at both SFC and TOA at certain ARM sites. For example, 
the kernel-estimated changes in SW flux at both the SFC and TOA and LW flux at the TOA exhibit a strong 
correlation (  0.87E r  ) with the ARM and CERES flux anomalies at the SGP, NSA, TWP, and ENA sites. 
However, the kernels are typically less skilled in reconstructing LW flux anomalies at the SFC (e.g., low 
correlation coefficients in Table 2). This section also demonstrates that the CloudSat radiative kernels can 
be useful to separate the contribution from each state variable (water vapor, air temperature, surface tem-
perature, surface albedo, and clouds) to radiative flux anomalies on a local scale.

Figure 5.  Decomposition of monthly kernel-estimated changes in ARM total-sky shortwave (SW) fluxes at SFC (a–f) and TOA (m–r) into SW water vapor (red), 
surface albedo (blue), and cloud (orange) kernel-estimated changes for the six ARM sites. These kernel-estimated responses are calculated using ARM-observed 
water vapor and surface albedo. Black line represents monthly anomalies of observed total-sky SW fluxes from ARM (for SFC) and CERES (for TOA). Panels 
g–l, bar charts of standard deviation of lines in a–f. Panels s–x, bar charts of standard deviation of lines in m–r. Black bar (O) stands for standard deviation of 
observed total-sky SW flux anomalies from ARM or CERES, red for water vapor kernel-estimated changes in SW fluxes, blue for surface albedo kernel-estimated 
changes, and orange for cloud kernel-estimated changes.
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4.3.  Bias Diagnosis

Although the CloudSat kernels could be biased toward the ERA5 temperature and humidity profiles (e.g., 
the 2B-FLXHR-LIDAR used to develop the CloudSat kernels incorporate temperature and humidity pro-
files from a product similar to ERA5), Sections 4.1 and 4.2 show that the correlations (RMSEs) between 
the kernel-estimated changes in LW fluxes calculated using ARM observed state variables and the ARM/
CERES-observed LW flux anomalies are lower (larger) than those in ERA5, except for the LW fluxes at NSA. 
Given the fact that the contribution from the ARM state variables (especially water vapor and temperature) 
to the total kernel-estimated changes in LW flux can be different from the contribution from the ERA5 
counterparts, it is important to determine whether the lower correlation in either the ARM or ERA5 results 
could be partially caused by the differences in their humidity and temperature profiles used to calculate the 
kernel-estimated changes.

Two comparisons are presented in this section. In the first comparison, we replace the ERA5 tempera-
ture and humidity used in Section  4.1 with the ARM-observed ones and seek the relationship between 
the monthly clear-sky flux anomalies from ERA5 and monthly clear-sky kernel-estimated changes in flux-
es calculated with these ARM-observed state variables. This comparison examines the role played by the 
ARM-observed temperature and humidity in changing the correlation. The differences between Table S2 
in Supporting Information S1 and Table S5 in Supporting Information S1 suggest the following: (a) the 
ARM-observed temperature and humidity at SGP are very similar to the ERA5 ones and they do not cause 
much difference in correlation with and bias from the ERA5 flux anomalies; (b) the ARM observations at 
NSA improve the correlation with the ERA5 LW flux anomalies and lower the biases; (c) the ARM-observed 
water vapor and temperature profiles lower the correlation with the ERA5 SW and LW flux anomalies at 
the TWP and ENA sites.

The second comparison is between the monthly clear-sky flux anomalies from ARM/CERES and month-
ly kernel-estimated changes in clear-sky fluxes calculated with ERA5 temperature and humidity (Table 
S6 in Supporting Information S1). The ERA5 water vapor and temperature lower the correlation between 

Figure 6.  Decomposition of monthly kernel-estimated changes in ARM total-sky longwave (LW) fluxes at SFC (a–f) and TOA (m–r) into LW water vapor (red), 
air temperature (blue), surface temperature (green), and cloud (orange) kernel-estimated changes for the six ARM sites. These kernel-estimated responses are 
calculated using ARM-observed water vapor and air and surface temperature. Black line represents monthly anomalies of observed total-sky LW fluxes from 
ARM (for SFC) and CERES (for TOA). Panels g–l, bar charts of standard deviation of lines in a–f. Panels s–x, bar charts of standard deviation of lines in m–r. 
Black bar (O) stands for standard deviation of observed total-sky LW flux anomalies from ARM or CERES, red for water vapor kernel-estimated changes in LW 
fluxes, blue for surface albedo kernel-estimated changes, and orange for cloud kernel-estimated changes.



Journal of Geophysical Research: Atmospheres

DAI ET AL.

10.1029/2020JD034510

17 of 21

kernel-estimated changes in clear-sky LW fluxes and the ARM/CERES clear-sky LW flux anomalies at NSA. 
We found that by using monthly ERA5 air temperature at the corresponding hours (6:00, 18:00, and 24:00) 
of the ARM counterparts, the monthly kernel-estimated clear-sky LW flux anomalies are much closer to the 
ERA5 clear-sky LW flux anomalies (r ∼ 0.8). This confirms the last statement in Section 4.2.2 that the large 
biases in ERA5 LW kernel responses at NSA are caused by the uncertainty associated with using diurnally 
averaged air temperature from ERA5. It seems that the diurnal cycle of air temperature in the Arctic region 
in ERA5 may play a role in lowering the correlation of LW fluxes at NSA in ERA5. On the other hand, the 
ERA5 temperature and humidity profiles increase the correlation at the TWP and ENA sites, which further 
indicates that the CloudSat kernels could be biased towards the ERA5 temperature and humidity profiles.

In Figure 7, we compare the vertical profiles of water vapor and air temperature kernel-estimated changes 
in SW and LW fluxes between ARM and ERA5 to further understand which state variable at what vertical 
levels is more responsible for the differences between the ARM and ERA5 kernel-estimated changes. In 

Figure 7.  Comparison of vertical profiles of water vapor (WV) and temperature (T) kernel-estimated changes in clear-sky shortwave and longwave fluxes (unit: 
W/m2) calculated using ARM (red) and ERA5 (blue) state variables at SFC and TOA for the six ARM sites. The red and blue lines are the average of water vapor 
or temperature kernel responses over the chosen period in Figure 1; the red and blue shades represent the standard deviation of the kernel responses during the 
period.
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general, the closer the profiles of water vapor or air temperature of ARM and ERA5 are in terms of the 
mean (red or blue line) and standard deviation (red or blue shade) in Figure 7, the smaller the difference 
their kernel-estimated responses will be (e.g., SW fluxes at SGP, NSA, and TWP C2; see Tables S2 and S5 in 
Supporting Information S1). For kernel-estimated LW responses at NSA, the vertical profiles of air-tempera-
ture-associated responses calculated with the ERA5 reanalysis show large differences in the lower to middle 
troposphere from those calculated with the ARM observations, suggesting the uncertainty in the ERA5 air 
temperature at these vertical levels is the culprit for causing the large biases in ERA5 LW kernel responses at 
this site in Section 4.1.2. At TWP C1, the lower tropospheric (middle tropospheric) water vapor and air tem-
perature in ARM lower the correlation of ARM kernel-estimated responses in LW flux at SFC (TOA) than in 
ERA5. For TWP C2 (C3), the larger biases of ARM kernel-estimated responses in LW fluxes at both SFC and 
TOA are related to the ARM air temperature (water vapor). At ENA, since both vertical profiles of air tem-
perature and water vapor are very similar in ARM and ERA5, the CloudSat radiative kernels cannot fully 
reconstruct the observed changes in LW fluxes (especially at SFC) in the presence of boundary layer clouds.

5.  Summary
In this study, we successfully reconstruct the monthly changes in both total-sky and clear-sky radiative 
fluxes in the ERA5 reanalysis and ARM/CERES observations using observation-based CloudSat radiative 
kernels and evaluate these kernel-estimated changes with the ERA5 and ARM/CERES flux anomalies at six 
ARM sites: SGP C1, NSA C1, TWP C1, TWP C2, TWP C3, and ENA C1. Using the ERA5 state variables, the 
CloudSat kernels enable an almost perfect reconstruction of the changes in ERA5 total-sky SW and LW flux-
es at SFC and TOA at all sites (r > 0.95), except for the LW flux anomalies at NSA. Through a bias diagnosis, 
we find that the biases in the kernel-estimated changes in the LW fluxes at NSA are related to uncertainty in 
the diurnal cycle of the ERA5 air temperature. By replacing the ERA5 state variables with the ARM obser-
vations, the kernels demonstrate the capability to reconstruct the LW flux changes at the NSA site.

When compared with the ARM- and CERES-observed flux anomalies, the kernel-estimated changes in SW 
and LW fluxes calculated with the ARM-observed state variables tend to show biases that are more than 
twice as in ERA5. The larger biases in the ARM-observed can be explained by four possibilities: (a) the 
CloudSat kernels could be biased toward ERA5 as these kernels were derived using similar temperature 
and humidity profiles of an ECMWF product as in ERA5; (b) the better agreement in the ERA5 reanalysis 
could be due to the parameterizations that over-simplify relationships between clouds, local thermodynam-
ics, and radiative fluxes; (c) there could be non-linearities or other complications in the real world that are 
not present in the reanalyzes; (d) a 2° × 2.5°grid box of the CloudSat kernels where the ARM site is located 
may not have enough samples of the CloudSat cloud profiles within a certain month during 2009 due to the 
nadir view of the CloudSat observations.

The decomposition of the kernel-estimated changes in ARM-observed total-sky SW fluxes shows that the 
cloud component, particularly the cloud radiative effect, tends to contribute the most to the changes. For 
example, the CloudSat kernels cannot fully reconstruct the observed flux anomalies at NSA as complex 
interactions among high-albedo snow-ice surfaces, surface-atmosphere energy and water vapor exchanges, 
and cloud processes are not completely understood and well parameterized (Stamnes et al., 1999).

The kernels are the least skilled in reconstructing variations in total-sky LW flux at SFC, especially at SGP 
C1, ENA C1, TWP C1, and TWP C2 (r∼[0.55,0.85]). TWP C1, the ARM site that is most strongly influenced 
by MJO activities, exhibits the lowest correlation in its kernel-estimated changes in SFC LW flux than the 
other two TWP sites, which are characterized by the ENSO and annual Australian monsoon variability. This 
indicates that some environmental states during particular phases of ENSO and MJO are not well captured 
in the CloudSat kernels as the kernels were derived from only one year (the Year 2009) of observations. 
Cloud mask, temperature, and water vapor can all contribute to the biases of these ARM kernel-estimated 
changes in LW flux at SFC at the TWP sites. The small variance of the kernel-estimated changes in SFC LW 
flux also makes it difficult to discern the relative contribution from each state variable (water vapor, air tem-
perature, surface temperature, and clouds) at TWP. The same bias diagnosis also implies that the CloudSat 
kernels may not be skillful enough to fully reconstruct changes in LW SFC flux in a local location that is 
characterized by marine boundary clouds, such as ENA, or a location with a great range of cloud properties 
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as SGP. For LW flux at TOA, the ARM kernel-estimated changes exhibit a very high correlation with the 
CERES-observed anomalies, with the cloud radiative effect plays a major role in modulating these changes.

This evaluation of the observation-based CloudSat radiative kernels strengthens the confidence in estimat-
ing changes in fluxes and individual radiative feedbacks with these kernels in the present-day climate. One 
caveat of this study is that the kernel-estimated changes in fluxes calculated using ARM state variables 
cannot capture the full diurnal cycle due to the limited sampling of the ARM air temperature and humidity. 
The results of both the ERA5 reanalysis and ARM observations suggest that the kernel technique is the 
most skilled in estimating changes in SW fluxes at both the SFC and TOA and LW flux at the TOA. Besides 
the aforementioned limitations of the CloudSat radiative kernels, these monthly kernels themselves can be 
susceptible to the sub-monthly errors/uncertainties associated with the limitations of the CloudSat/CALIP-
SO observation and the errors in the radiative transfer models used to generate them. However, since these 
errors and uncertainties have already existed in the monthly CloudSat kernels, it is not within the scope of 
our paper to quantify these errors. Due to the assumption of linearity between the radiative fluxes and the 
state variables in the kernels, the uncertainty of the kernel-estimated changes in fluxes can be amplified 
by any errors in the CloudSat kernels and anomalies of state variables. The CloudSat kernels considered 
in this study do not include any aerosol radiative effects. The direct aerosol effects, despite being a smaller 
influence compared to humidity and surface albedo, could still contribute to the SW flux changes (Matus 
et al., 2019).

Data Availability Statement
The ARM data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a U.S. 
Department of Energy (DOE) office of science user facility managed by the Biological and Environmental 
Research Program, accessible at https://www.arm.gov/. The CERES flux data were obtained from the NASA 
Langley Research Center Atmospheric Sciences Data Center (ASDC), accessible at https://ceres.larc.nasa.
gov/. ERA5 reanalysis data were downloaded from the ECMWF Copernicus Climate Data Store (CDS), 
accessible at https://cds.climate.copernicus.eu/.
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