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ABSTRACT

The spatial distribution of precipitation occurrence has important implications for numerous applications

ranging from defining cloud radiative effects to modeling hydrologic runoff, statistical downscaling, and

stochastic weather generation. This paper introduces a newmethod of describing the spatial characteristics of

rainfall and snowfall that takes advantage of the high sensitivity and high resolution of the W-band cloud

precipitation radar aboardCloudSat. The resolution dependence of precipitation occurrence is described by a

two-parameter exponential function defined by a shape factor that governs the variation in the distances

between precipitation events and a scale length that represents the overall probability of precipitation and

number density of distinct events.

Geographic variations in the shape factor and scale length are consistent with large-scale circulation pat-

terns and correlate with environmental conditions on local scales. For example, a large contrast in scale

lengths between land and ocean areas reflects the more extensive, widespread nature of precipitation over

land than over ocean. An analysis of warm rain in the southeast Pacific reveals a shift from frequent isolated

systems to less frequent but more regularly spaced systems along a transect connecting stratocumulus and

trade cumulus cloud regimes.A similar analysis during theAmazonwet season reveals a relationship between

the size and frequency of convection and zonal wind direction with precipitation exhibiting a more oceanic

character during periods of westerly winds. These select examples demonstrate the utility of this approach for

capturing the sensitivity of the spatial characteristics of precipitation to environmental influences on both

local and larger scales.

1. Introduction

The spatial distribution of clouds and precipitation has

long been recognized as having important implications

for the earth–atmosphere system. Precipitation and the

associated cloud masses affect both local energy budgets

and large-scale circulations through reflection and ab-

sorption of radiation and the release and transport of

latent heat. While global mean precipitation and its re-

sponse to realistic climate forcing scenarios is being

modeled increasingly well by the leading global circula-

tion models (GCM), changes in precipitation frequency

and volume at regional scales remain a major source of

uncertainty in climate predictions (Stephens et al. 2010;

Flato et al. 2013).

Precipitation occurrence patterns also play an impor-

tant role in accurately modeling runoff and infiltration at

the catchment scale in numerical weather prediction

models. Hydrologists require finescale, detailed knowl-

edge of the frequency, volume, and spatial distribution of

precipitation to assess the local impacts of impending

extreme weather events or to adapt to climate change

(Fowler et al. 2007). Practical decision-making for in-

frastructure and land use under forecasts of increasing or

decreasing precipitation volume can only be made with

this localized information (Milly et al. 2008). It can be

imagined that even if the monthly average volume or

frequency of precipitation does not change in an area,

changes in the spatial and temporal distribution may still

be important for agriculture, flooding, and other hydro-

logic applications. Unfortunately, current computation

speeds and a lack of explicit representation of micro-

physics require the use of either dynamical or statistical

methods to downscale highly variable processes such as

clouds and precipitation to fine scales in GCMs.

This problem may be partially addressed using new

tools such as global cloud-resolving models (GCRM)

and multimodel frameworks (MMF) that offer potential

for more explicit representation of cloud and pre-

cipitation processes on global scales. However, these

Corresponding author address: Mark Smalley, 1225W. Dayton

St., Madison, WI 53706.

E-mail: smalley2@wisc.edu

NOVEMBER 2015 SMALLEY AND L ’ ECUYER 2179

DOI: 10.1175/JAMC-D-15-0019.1

� 2015 American Meteorological Society

mailto:smalley2@wisc.edu


tools are currently too computationally expensive to run

for long periods at the high resolution needed to study

individual catchments and also require observational

validation. An alternative approach to creating subgrid

precipitation spatial distributions is the implementation

of stochastic weather generation models that prescribe

precipitation fields for the given circulation conditions

(Wilks 2010). Developing and evaluating such models is

an active area of research (Fowler et al. 2007), moti-

vating the need for observational benchmarks of the

spatial character of precipitation globally and for

knowledge of the local- and large-scale factors influ-

encing the spatial distribution of precipitation.

The large range of relevant precipitation scales, from

individual convective cells to synoptic-scale frontal sys-

tems,makes it desirable to determine an analytical relation

that describes the variation of precipitation distributions

across these scales. Many previous works have focused on

the self-repeating or fractal nature of precipitation events

(Tao and Barros 2010; Ferraris et al. 2003; O’Brien et al.

2013), while others have found that the variance of pre-

cipitation does not always follow a single pattern through

all scales (Marani 2005). Gebremichael et al. (2008) used

precipitation radar (PR) retrievals from the Tropical

Rainfall Measuring Mission (TRMM) to describe the

spatial distribution of rainfall in the tropics with scale-

invariant relations. They found a land–ocean contrast

in their distribution parameters: precipitation over tropical

land tends to break from scale invariance more than pre-

cipitation over the tropical ocean.

While advantageous because of its 2D imaging and

fully diurnal sampling, the Ku-band TRMM PR likely

misses much of the light and isolated rainfall that domi-

nates precipitation frequency in the radiatively important

stratocumulus regions, which also makes up a significant

fraction of the total rain frequency around the globe

(Berg et al. 2010; Haynes et al. 2009). In addition, the

TRMM PR only samples the region equatorward of

about 358, leaving a large fraction of the midlatitudes and

polar regions devoid of radar-based estimates of pre-

cipitation occurrence. By virtue of its highly sensitive

94-GHz frequency, ;1.5-km instantaneous field of view

(FoV), and 988 orbit inclination, the CloudSat Cloud

Profiling Radar (CPR) can mitigate these deficiencies,

though with significantly reduced sampling due to a lack

of scanning capability. The CPR operated nominally for

about 4.5 years and has continued to operate during the

daytime for another 5 years, providing sufficient data

volume to sample monthly and seasonal variations in the

distribution of precipitation around the globe. This study

will utilize observations from four complete annual cycles

from 2007 to 2010, when the CPR was operating at full

capacity during its day and night overpasses.

The specific datasets used will be described in detail in

section 2. Section 3 introduces a new approach for de-

scribing the spatial distribution of precipitation using bi-

nary precipitation/no-precipitation discrimination from

CloudSat observations, and section 4 explains the physi-

cal mechanisms that create variation in the spatial dis-

tribution parameters. The spatial distribution and day/

night variability of the scale dependence of precipitation

around the globe is documented in section 5. Sections 6

and 7 illustrate the variations of the precipitation scaling

relationships of precipitation in the geographic transition

between stratocumulus and trade cumulus cloud types in

the southeast Pacific subtropics, while section 8 invest-

igates the relationship between zonal wind speed and the

spatial character of precipitation in the Amazon. Key

results are summarized in section 9 to place the technique

in the context of ongoing efforts to improve the repre-

sentation of the spatial characteristics of precipitation in

hydrological, weather, and climate models.

2. Data

The primary data used in this study are precipitation

flags from the CloudSat 2C-PRECIP-COLUMN (2CPC)

retrievals spanning the years from 2007 to 2010. The

2CPC dataset is available through the CloudSat Data

Processing Center (http://www.cloudsat.cira.colostate.edu).

With a sensitivity of about 230dBZ, the 94-GHz CPR is

very sensitive to cloud and precipitating hydrometeors

(Tanelli et al. 2008). In this analysis, CloudSat pixels de-

terminedas ‘‘rain probable,’’ ‘‘rain certain,’’ ‘‘snowcertain,’’

or ‘‘mixed certain’’ in the 2CPC Precip_flag are considered

to be precipitating and the remaining successful retrievals

are considered to be nonprecipitating, creating a binary

precipitation/no-precipitation discriminator. The corre-

sponding thresholds in near-surface attenuation-corrected

reflectivity over open ocean for each of these precipi-

tation categories are 27.5, 0, 25, and 25 dBZ, respec-

tively (Haynes et al. 2009). Retrievals over land are

slightly more complicated because of uncertainties in

the path-integrated attenuation of the CPR beam and the

surface backscatter cross section, but similar thresholds

are used in the lowest cloud layer above the fifth range bin

above the surface. A detailed description of the overland

retrieval can be found in Smalley et al. (2014). Rain

probable FoVs are included primarily to enhance de-

tection in marine stratocumulus areas where warm rain

often falls in the form of drizzle. Some of this light pre-

cipitation flagged as rain probable may evaporate before

reaching the surface; while not contributing to rain vol-

ume, the virga redistributes boundary layer temperature

and water vapor and affects cloud albedo by depleting

cloud water and aerosols. This analysis likely captures all
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but a small amount of very light, isolated precipitation

that partially fills the CPR pixel and shallow precipitation

occurring over areas with steep terrain features because

of ground clutter contamination in the lowest 4–5 CPR

range gates above the surface. Because the CPR is the

only science cargo aboard the CloudSat platform, this

paper will reference each identically as CloudSat.

3. A new method for defining precipitation spatial
structure

To model the spatial structure of precipitation, it is

advantageous to reduce the number of degrees of free-

dom by developing a functional representation of the

scale dependence of precipitation occurrence with as few

free parameters as possible. The goal of this study is to

represent the spatial characteristics of precipitation oc-

currence in such a way that they can ultimately be related

to the large-scale environment and/or properties of the

local environment, which may vary on scales smaller

than a synoptic system. In this way, the spatial distribu-

tion parameters act as a bridge between local state vari-

ables (e.g., CAPE, SST) and the local spatial distribution

of precipitation. To these ends, this section describes a

new approach for processing binary precipitation/no-

precipitation flags that emphasizes the resolution de-

pendence of precipitation occurrence at scales larger

than the ;1-km CloudSat footprint.

The resolution of the binary precipitation occurrence

vector described in section 2 is degraded by applying an

effective search length d along the CloudSat track. An

FoV at coarser resolution (longer search length) is said

to contain precipitation if at least one native-resolution

(;1.1 km) CloudSat FoV is flagged as precipitating

by the 2CPC Precip_flag retrieval. For example, five

CloudSat FoVs are considered when determining the

coarse-resolution precipitation state of a target FoV at

d5 5.5 km. If any of the previous two FoVs or following

two FoVs are flagged as precipitating by 2CPC Precip_

flag, the target FoV is said to contain precipitation at d5
5.5 km coarse resolution. Precipitation occurrence vec-

tors computed at a range of values of d can then be used

to establish the resolution dependence of the probabil-

ity of precipitation (PoP) over any prescribed region.

Tables 1 and 2 exhibit two representative examples of

how the resulting PoP varies with d, given distinct initial

spatial distributions of precipitation at the native;1-km

CloudSat resolution, denoted PoP(1). For the simplest

case of a single contiguous precipitation event (CPE) in

the center of the scene (Table 1), PoP increases mono-

tonically with increasing d toward 100%. Table 2 contains

the same PoP(1) but precipitating areas are now dis-

tributed into three separate CPEs along the CloudSat

track. This different spatial distribution causes the PoP

to increase more rapidly at shorter search lengths

(higher resolutions) until the initially independent CPEs

begin to merge and there are fewer CPE edges to which

precipitation may be added at longer search lengths

(coarser resolutions). These conceptual examples illus-

trate how the form of PoP(d) incorporates information

about three key aspects of the precipitation fields: the

high-resolution frequency of precipitation, the number

of distinct precipitation events, and the relative dis-

tances between precipitation events. Two additional

TABLE 1. Example behavior of the resolution-degradation process used to determine precipitation occurrence at spatial resolutions

coarser than the individual CloudSat FoV. Row 1 represents the precipitation mask for a hypothetical scene at the CloudSat native high

resolution (column headings indicate hypothetical along-track indices). Ones represent precipitating scenes, while empty boxes represent

a lack of precipitation. Subsequent rows represent precipitation flags at the spatial resolution indicated on the left. The resulting scene-

averaged PoP is shown at right.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PoP (%)

1 1 1 1 1 11.4

3 1 1 1 1 1 1 17.1

5 1 1 1 1 1 1 1 1 22.9

7 1 1 1 1 1 1 1 1 1 1 28.6

9 1 1 1 1 1 1 1 1 1 1 1 1 34.3

TABLE 2. As in Table 1, but for a scene with the same PoP(1) but distributed among multiple CPEs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PoP (%)

1 1 1 1 1 11.4

3 1 1 1 1 1 1 1 1 1 1 28.6

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 45.7

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60.0

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71.4
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examples from segments of CloudSat observations over

the southeast Pacific (SEP) and central U.S. plains are

presented in Fig. 1 for comparison. These regions are

chosen because they exhibit very different precipitation

regimes in their respective winter seasons and are gener-

ally representative of the extreme ends of the global

spectrum of precipitation characteristics. Precipitation

occurrence vectors are presented for resolutions ranging

from the native CloudSat resolution to 201km in length.

As is observed when comparing Table 2 to Table 1, the

higher CPE density in the SEP (78 versus 5 events) causes

the PoP to rise more quickly than in the case of the U.S.

plains. The increased PoP(1) (;25% vs ;15%) in the

SEP adds to this effect. As the resolution degrades at lon-

ger d, the slope of PoP(d) decreases in both regions. The

difference in the slopes at high and low resolution is related

to the relative CPE spacing in the considered data, as ini-

tially distinct CPEs become indistinguishable at coarse

resolutions. These are the primary factors governing the

shape of observed relationships between PoP and d.

It is unlikely that a single overpass will represent ei-

ther the characteristic relative event spacing or number

of events. Analyses subsequent to those in Fig. 1 include

data from many overpasses to better represent the sta-

tistical relationships instead of being controlled by the

high variance of near-instantaneous weather.

FIG. 1. The relationship between resolution and PoP for two CloudSat orbits that passed over the (a),(c) SEP

stratocumulus decks (12 Dec 2007; orbit 05897) and (b),(d) U.S. plains stratiform precipitation regimes (2 Dec 2007;

orbit 08489). In (a) and (b), black shading represents precipitation at each resolution along the x axis. The native

CloudSat resolution is seen at about d 5 1.1 km in all plots.
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The utility of this process becomes evident when

the PoP is plotted as a function of d as shown in

Figs. 1c and 1d. The relationship is well approxi-

mated by the exponential function

PoP(d)5 12P
co
exp

"
2

�
d2 1

L

�X
#
. (1)

Here, d is the search length (proxy for resolution) andPco

is the native-resolution fraction of nonprecipitating

CloudSat pixels, Pco 5 12PoP(1). Equation (1) de-

scribes how the probability of precipitation varies with

spatial resolution. In this framework the spatial charac-

teristics of precipitation occurrence are described by just

two parameters: a shape factor X and a scale length L.

The shape factor is unitless and the scale length is mul-

tiplied by a factor of 1.1 to convert the units from number

of FoVs to a physical search length in kilometers.

Figures 1c and 1d present the exponential fit, shape

factor, and scale length for the segments shown in Figs.

1a and 1b. These examples show that even individual

overpasses with widely different spatial distributions can

be described accurately by Eq. (1). It should be noted,

however, that the goal of this study is to capture varia-

tions in the statistical properties of precipitation spatial

distributions across different regions. This requires a

collection of enough individual overpasses in each region

to obtain an accurate representation of precipitation

prevalence, characteristic spacing, and the number den-

sity of events. In particular, the U.S. plains (and other

land areas) will be shown to exhibit scale lengths much

longer than displayed in Fig. 1b. The amount of data

necessary to resolve such long scale lengths is greater

than the number of FoVs in each individual CloudSat

segment, so more overpasses are required to properly

capture the relationship between PoP and d and to derive

the appropriate shape factor and scale length. The shape

factor is related to characteristic event spacing, so

many events (and therefore their separations) must be ob-

tained before the shape factor may be reliably estimated.

Through statistical tests (not shown), it was demonstrated

that about 75000 to 120000 FoVs are necessary to obtain

convergence in the distribution parameters depending on

season, location, and characteristic weather regime. The

relationships between the resulting distribution parame-

ters and a more complete spectrum of environmental

factors are the focus of an ongoing study.

One immediate application of this methodology is that

the resulting parameterization, PoP(d), describes the

probability of observing precipitation along any 1D grid

box at any prescribed resolution. This has utility in un-

derstanding the effects of model resolution on fractional

precipitation in weather and climate models. Stephens

et al. (2010) showed that using the correct averaging scale

is important when comparing precipitation areal coverage

inGCMs. They further recognized that the averaging scale

required to relate the probability of precipitation between

models with different spatial resolutions depends on the

spatial distribution of precipitation in that area, something

that may change with season, location, and weather re-

gime. A further application of the methodology outlined

above is, therefore, to relate the two fit parameters to the

large-scale and local thermodynamic environment so that

theymay be used to downscale precipitation occurrence to

resolutions finer than model grid boxes. The distribution

parameters represent a new method of characterizing

spatial distributions of event occurrence, offering insights

into factors controlling the relative spacing and number

density of precipitation events. This second application

will be explored in greater detail below.

4. Physical interpretation of distribution
parameters

Similar approaches to establishing the spatial char-

acteristics of clouds and rainfall in more limited regions

have been developed by others (e.g., Marchand 2012;

Kundu and Siddani 2011; Schleiss et al. 2011). However,

the method of resolution degradation employed here

leads to subtle differences in the interpretation of the

resulting shape factor and scale length that warrant ad-

ditional discussion prior to examining their spatial and

temporal distributions.

Figure 2 illustrates how the regression outlined inEq. (1)

responds to precipitation distributions from different

FIG. 2. Effects of resolution on the probability of precipitation

and distribution parameters from Eq. (1) for four regions: North

Pacific (308–608N, 1608–2208E), tropical west Pacific (108S–108N,

1308–1908E), U.S. plains (358–508N, 2608–2758E), and southeast

Pacific (258–108S, 2508–2848E).
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weather regimes that have similar PoP at the native

CloudSat resolution. The rate of increase in PoP with

increasing d varies substantially with region but the ex-

ponential fit captures this variation very well (R2 values

are above 0.997 for all four of these cases). The results

can be interpreted as follows. As d increases from the

native CloudSat resolution, PoP increases as illustrated

in Tables 1 and 2 and in Figs. 1a and 1b. In regions with

broken precipitation (e.g., SEP), there are more distinct

CPEs that increase the rate at which precipitation oc-

currence increases with increasing d (e.g., Table 2).

Accordingly, PoP initially increases rapidly but slows

when the resolution is degraded enough that initially

distinct CPEs become indistinguishable. The initial rate

of increase is much weaker in regions populated by

large-scale stratiform systems for which there are rela-

tively fewer CPEs (e.g., Table 1). This is the case with

large-scale systems typical of those observed over the

U.S. plains in the winter months. The scale length L

describes the resolution at which the PoP increases to

within a factor of 1/e of unity from the high-resolution

PoP(1). The shape factor X represents the deviation of

the curve from a standard exponential (X 5 1). For

precipitation, the shape factor generally takes values

less than one, so PoP increases more rapidly than would

be represented by a standard exponential at resolutions

higher than L and less rapidly at coarser resolutions.

To more precisely illustrate the specific factors con-

trolling the shape factor and scale length, synthetic bi-

nary rain datasets were generated as an autocorrelated

vector. High-resolution synthetic rain flags were created

to obey the following rules: if the rain flag for a given

synthetic pixel has a value of 0 (nonraining), the prob-

ability of the next pixel also being 0 is very high: 0.998 to

reflect the high autocorrelation of nonrainy pixels. On

the other hand, if the current pixel is 1 (raining), the

probability of the next pixel being rainy is slightly lower

but still very high: 0.911. If the synthetic dataset is long

enough, the resulting fraction of simulated scenes with a

value of 1 is about 10%. Many combinations of these

autocorrelations can produce PoP(1) 5 10%, but these

values were chosen because they result in shape factors

and scale lengths that are similar to what are observed in

the CloudSat data. Autocorrelation values can be ad-

justed to obtain different high-resolution PoP values

[e.g., 0.990 and 0.960 for PoP(1) 5 20%] so, with a long

enough synthetic dataset, the choice of the two auto-

correlations defines the resulting PoP(1). Choosing the

two autocorrelations to be identical will result in, on

average, a synthetic dataset with PoP(1) 5 50%. The

sequence is initialized by a nonraining pixel, and a siz-

able segment of the beginning of the synthetic data is

removed to eliminate the effects of creating the first

pixel without information from a previous synthetic

pixel. The remaining pixels are broken into smaller

segments from which distribution parameters can be

computed via Eq. (1). The result is a realistic rain field

that follows a similar spatial distribution to naturally

occurring precipitation. This is analogous to the ‘‘weather

generator’’ procedure one would use to create a realistic

precipitation series that obeys the characteristics pre-

dicted by the exponential distribution with the corre-

sponding shape factor and scale length, an application

that will be investigated in future work.

Figure 3 illustrates how the shape factor and scale

length are affected by characteristics of the spatial dis-

tribution of precipitation. Figure 3a shows that the shape

factor is most strongly influenced by changes in the

distribution of distances between precipitation events,

represented here by the coefficient of variation (CoV;

defined as the standard deviation divided by the mean).

High values of CoV result in low shape factors. This is

consistent with the fact that if the CoV is low, many

distances between CPEs are similar and CPEs appear

indistinguishable at comparable resolutions, causing a

sharper transition toward decreased slopes in Eq. (1).

The interpretation of the scale length is slightly more

complicated. Figure 3b shows that the scale length ex-

hibits a clear trend toward lower values as the number

density of CPEs increases. For a fixed PoP(1), the

presence of fewer but larger CPEs requires coarser

resolutions to be simulated before the PoP approaches

unity resulting in longer scale lengths. A lower value of

PoP(1) will also lead to longer scale lengths. As ex-

pected, the CPE density is highly correlated with PoP(1)

so these two effects combine to yield a much larger

range in L than X in observed precipitation.

Figures 3c and 3d show that the relationships identi-

fied in the simulated precipitation distributions are also

apparent in observations. Here, precipitation detections

from the regions and time periods shown in Fig. 2 are

broken into segments (each still containing many indi-

vidual overpasses), fitted, and plotted against their re-

spective controlling factors. The linear regression lines

are included for guidance and do not represent an ab-

solute slope or intercept. The U.S. plains region is rec-

ognizable by its very long scale lengths in the winter

months of 2007, indicating a low precipitation occur-

rence and/or a low density of CPEs. Smalley et al. (2014)

found that CloudSat observes high rates of precipita-

tion over the United States when the near-surface air

temperature is below zero, indicating that this signal is

likely due to the stratiform frontal nature of winter

precipitation in this region. Conversely, much shorter

scale lengths characterize the frequent isolated pre-

cipitation in the SEP. Precipitation in this region also
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exhibits a much wider range of shape factors, high-

lighting the more variable degree of precipitation or-

ganization, owing to factors that will be discussed in

greater detail below.

To summarize, this method of degrading the resolu-

tion of binary precipitation discrimination preserves

finescale spatial characteristics of precipitation. The

form of the resulting PoP versus resolution can be re-

liably modeled by an exponential function with two free

parameters, a shape factor X and scale length L. The

shape factor represents the PDF of distances between

distinct precipitation events, and the scale length rep-

resents the number density of those events and the

high-resolution probability of precipitation. A broken pre-

cipitation field with high variance in event spacing leads

to a small shape factor and vice versa. The scale length is

determined by the overall rate of increase toward 100%

PoP as d increases. If PoP(1) is low and there are few

CPEs, the resulting scale length is long because there are

relatively few CPE edges to which additional pre-

cipitation may be added via resolution degradation, and

it therefore takes long search lengths (coarse resolutions)

for the PoP to approach unity.

There are some important caveats associated with this

analysis. First, the resolution degradation method uti-

lized in this study focuses on characterizing the spatial

distribution of precipitation occurrence within the re-

gion of interest as opposed to the distribution of pre-

cipitation intensity. In principle, the scale dependence of

precipitation intensity could be examined by averaging

FIG. 3. Physical interpretation of the shape factor X and scale length L in terms of properties of the spatial distri-

bution of precipitation. (a),(b) Data were computed using synthetic data described in the text. (c),(d) Scatterplots

of distribution properties and spatial parameters for the regions and time periods shown in Fig. 2. Each pair of

distribution parameters are computed from a separate set of 10 000 resolution-degraded FoVs: synthetic FoVs in

(a) and (b) and observed FoVs in (c) and (d).
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CloudSat reflectivities before running the CloudSat pre-

cipitation algorithm, but such an approach places a

disproportionate amount of influence on FoVs con-

taining heavy precipitation.While thismay be of interest

for several applications (e.g., effects of sensor resolution

on retrieved precipitation rates), it does not represent

the spatial characteristics of precipitation occurrence

within a grid box that are particularly important for

modeling radiative effects of precipitation efficiency,

stochastic weather generation, and hydrologic modeling

that are the targets of this study. In addition, strong at-

tenuation at W band limits the upper range of pre-

cipitation intensities that can be accurately retrieved

from CloudSat observations, requiring the use of more

complicated multi-instrument merging techniques like

those presented in Berg et al. (2010) to accurately rep-

resent the full rain-rate PDF. Ultimately, a combination

of occurrence and intensity-centric methods are likely

required to fully address the problem of precipitation

downscaling on global scales, but this paper focuses on

the former as it has received less attention in the liter-

ature to date.

A comment is also warranted concerning constraints

imposed by trade-offs between resolution and sampling.

Figure 2 illustrates the effects of simulating resolutions

of more than 500 km or about 58 in latitude, a range that

can experience considerable changes in the character-

istics of precipitation, both instantaneously and clima-

tologically. To obtain a more localized picture of the

spatial characteristics, it is advantageous to limit the

influence that a particular region can have on neigh-

boring regions. The distribution parameters are found to

be generally insensitive to increasing the maximum

search length beyond 200 km. Therefore, to better rep-

resent local precipitation processes, the maximum res-

olution is set to 201 km for the remainder of the analysis.

Finally, regions with very low numbers of CPEs and/or

PoP(1) reduce the signal-to-noise ratio of the analysis.

To remedy this, subsequent analyses ignore geographic

areas with less than 1% PoP(1), as determined by

CloudSat.

5. Global, seasonal, and diurnal variability

Figure 4 shows global maps of the seasonal variation

of PoP(1), the shape factor, and the scale length for

2007–10. This figure was created by compiling pre-

cipitation statistics for all 28 areas sampled by CloudSat

between 808S and 808N. Resolution-degraded pre-

cipitation flags belonging to each area are used to

compute PoP versus d relationships, which are then used

to compute the distribution parameters shown in the

second and third columns. To better highlight large-scale

patterns, high spatial variability in each plot has been

removed by applying the filter defined in Eq. (2):

W5

0
BBBBB@

0 1 1 1 0

1 5 5 5 1

1 5 7 5 1

1 5 5 5 1

0 1 1 1 0

1
CCCCCA . (2)

Casual inspection of the second column (shape factor)

and third column (scale length) suggests that the struc-

ture parameters are able to discern broad characteristics

of large-scale circulation regimes and their annual cycles

around the globe. For instance, the isolated but frequent

convective nature of precipitation in the ITCZ favors

short scale lengths, on the order of 100 km, and smaller

shape factors than the surrounding oceans. Longer scale

lengths south of the ITCZ indicate decreasing PoP(1),

which is characteristic of large-scale descent.

The midlatitude oceanic storm tracks are manifested

through reduced values of shape factor and scale length.

Perturbations in the polar front that create southern

midlatitude cyclones are large-scale disturbances that

produce widespread precipitation systems. Many of

these long-lived southern storm-track precipitation sys-

tems are spun up by vortex stretching on the lee side of

the southern Andes Mountains at around 458S (Hoskins

and Hodges 2005). However, the observed PoP(1) is

low in the regions near the coast of Argentina, so scale

lengths remain long in the downstream area. Since

precipitation is common in the rest of the storm-track

regions in all seasons, the relationship between scale

length and PoP(1) translates to short scale lengths,

as especially evident in the austral winter months of

June–August (JJA).

Characteristic precipitation patterns are also evident

in the SEP and southeast Atlantic stratocumulus re-

gions. Low values of the shape factor in these regions are

indicative of precipitation distributions consisting of

high variance in CPE spacing. The effect is most pro-

nounced during the local winter and spring, coinciding

with maxima in PoP(1), CPE density, and CoV (in-

vestigated below for SEP). These regions are dominated

by large-scale subsidence and experience a stablemiddle

troposphere, which caps convection at the boundary

layer with a strong temperature inversion that enables a

persistent stratocumulus cloud deck (Wood 2012).

Cloud-top radiative cooling results in downward con-

vection and a maintained upward transport of water

vapor through thewell-mixed surface-coupled boundary

layer, forming frequent warm rain that falls as drizzle.

The precipitation in the stratocumulus areas is often
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FIG. 4. Seasonal maps of PoP(1), shape factor, and scale length on a 28 3 28 geographic grid for all CloudSat orbits from 2007 to 2010. The

plotted values have been filtered as defined in Eq. (2) to emphasize large-scale variations.
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very light and originates from low heights in the marine

boundary layer. The signal from these areas is largely

absent from the analysis if the rain probable detections

are omitted (not shown) owing to the importance of

drizzle to the overall precipitation spatial distributions

in these areas.

In these environments, pockets of open cells (POCs)

can significantly contribute to precipitation occurrence

and volume, where convective events are otherwise

inhibited because of horizontally homogenous condi-

tions of capped ascent. Stevens et al. (2005) found that

POCs are long-lived, self-sustaining convective circula-

tions that act to increase local rain frequency and vol-

ume by their convective cell structure. This structure is

likely determined by combinations of entrainment of

warm free-tropospheric air and local aerosol types and

concentrations via their effects on cloud drop size dis-

tributions. The analysis conducted here suggests that

these precipitation patterns exhibit a very irregular

spatial pattern, with many CPEs positioned close to

one another within POCs and longer distances of non-

precipitation between POCs, particularly during the

local winter (JJA) and spring [September–November

(SON)] when shape factors and scale lengths are re-

duced to 0.40–0.55 and 75–100km, respectively. The

POCs serve as a contributing element to the decreased

values of shape factor and scale length in the SEP

through increased PoP(1) and variability in event

spacing.

Large differences in the characteristic spatial patterns

of precipitation systems are also evident between land

and ocean areas. In addition to having generally lower

PoP(1) reported by the 2CPC, the land areas in Fig. 4 are

characterized by lower CPE density characteristic of

extensive precipitation systems. These results are con-

sistent with Gebremichael et al. (2008), who found that

spatial distributions using the TRMM PR follow a

comparable land–ocean pattern through a scaling pa-

rameter that similarly represents the spatial extent of

precipitation. This is corroborated by Yang and Nesbitt

(2014), who observed more convective precipitation

over land areas than ocean areas with the TRMM PR.

Williams and Stanfill (2002) used the TRMM lightning

imaging sensor to find that land areas are characterized

by increased lightning flashes, which is a good proxy for

convective activity.

There are some notable exceptions to the land–ocean

contrast, including large regions in northern South

America and theWeddell Sea. The landlike character of

precipitation over the Weddell Sea is likely due to the

persistent sea ice coverage and strong influence of the

Antarctic ice sheet in this region. In the Southern

Hemisphere summer months of December–February

(DJF), precipitation assumes shorter scale lengths more

characteristic of the surrounding southern oceans. The

Arctic Ocean follows a similar trend with scale lengths

more characteristic of oceanic regions during the

northern summer months. It is also interesting to note

that the land–ocean contrast in scale length is broken

along the Pacific coast of Canada and Alaska, where

high precipitation frequency from storm-track systems

flows over the Canadian RockyMountains. The Tibetan

Plateau also exhibits low-scale lengths associated with

high PoP(1), especially in boreal summer JJA during the

South Asian monsoon southwesterly phase.

Precipitation in the Amazon more closely resem-

bles oceanic precipitation than overland precipitation,

especially during the wet season [DJF and March–May

(MAM)]. Thus, the analysis here lends support to pre-

vious studies that have described the region as the

Amazon Green Ocean (AGO; Silva Dias et al. 2002;

Petersen et al. 2002; Williams et al. 2002). This re-

gion is discussed in greater depth below in the con-

text of changes in precipitation scaling associated with

easterly and westerly wind regimes during the wet

season.

One of the shortcomings of CloudSat’s sun-synchronous

orbit within the A-Train is that it only samples at

about 0130 and 1330 local time (LT) (L’Ecuyer and

Jiang 2010). As a result, it fails to resolve the full

diurnal cycle of precipitation and may miss the peak of

afternoon convection over land in areas with significant

diurnal variation. For example, Carbone et al. (2002)

demonstrate diurnal and semidiurnal signals in NEXRAD

echo frequency over the midwestern United States

during the May–August warm season. The CloudSat

samples these areas just before the typical 2100–0200

UTC (Rockies) and 1900–0200 UTC (948–828W) peaks

in echo frequency (not shown). The peak in precipi-

tation intensity does not, however, necessarily coin-

cide with the peak in precipitation frequency or the

characteristic CPE geographic distribution. Still, the

ascending and descending branches of the CloudSat

orbit may be used to obtain a crude representa-

tion of day/night differences in the characteristics

of precipitation.

Day/night variability of PoP(1), shape factor, and

scale length is shown in Fig. 5 as the ratio of values ob-

tained by separate analysis of observations from day-

time to nighttimeD/N. The display ofD/N is symmetric

about one (note the nonlinear color scales) and omits

areas that experience PoP(1), 1% in either day or night

overpasses. The analysis is identical to that of Fig. 4

except the ;1330 LT daytime overpasses have been

separated from and divided by the ;0130 LT nighttime

overpasses.
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FIG. 5.Day/night PoP(1), shape factor, and scale length expressed as the ratio of the day-to-night value at each 48 3 48 location.All data for

which PoP(1) . 1% are displayed, and the data have been filtered by Eq. (2).
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It is clear from Fig. 5 that CloudSat observes the

greatest day/night variation in the stratocumulus regions

to the west of the subtropical continents. The D/NPoP is

far below 1 to the west of subtropical SouthAmerica and

Africa, with far more precipitation observed during the

nighttime overpasses. This is consistent with Rapp et al.

(2013), who report that 60%–80% of precipitation oc-

currence observed by CloudSat in the SEP is observed

during the nighttime overpasses. On the other hand,

continental areas tend to experience more precipitation

during the daytime via convective processes, including

the Amazon despite its otherwise oceanic spatial dis-

tribution characteristics. The results in Fig. 5 are gen-

erally consistent with previous studies that identified an

oceanic diurnal maximum in the early morning hours

(0300–0600) and a continental diurnal maximum in the

afternoon hours (1500–1800) in TRMM to diagnose the

peaks in the tropical and subtropical diurnal cycles of

precipitation volume (Yang and Smith 2006; Yang et al.

2008; Yang and Smith 2008). In addition to the after-

noon maxima in NEXRAD echo frequency over the

RockyMountains and areas east of 948W,Carbone et al.

(2002) identified a consistent radar echo propagating

eastward from the Rocky Mountains diurnal maximum

in the afternoon. This propagating system arrives at the

988–948W area out of phase with the dominant diurnal

cycle in the Rockies and the eastern areas. This out-of-

phase system appears in JJA, whereD/NPoP drops below

unity in the center of the United States, as indicated by

higher precipitation frequency at night than during

daytime overpasses.

The shape factor also exhibits its greatest day/night

variations in the stratocumulus areas, with daytime

overpasses having more evenly spaced precipitation

events (higher shape factors) than nighttime overpasses.

Small D/NX over eastern Asia during MAM (and gen-

erally over land areas) indicates the opposite, with the

precipitation event spacing being more uniform during

the nighttime overpasses (larger shape factors at night).

This is also observed in MAM shape factors over west-

ern North America.

The land–ocean contrast similarly dominates the day/

night differences in scale length. In addition, oceanic

stratocumulus regions exhibit daytime scale lengths

up to 4 times as long as those at night. This indicates

that these oceanic precipitation systems occur more

frequently at night (see D/NPoP column). On the

other hand, D/NL over land trends show longer scale

lengths during the night, especially over northern

South America where daytime convection dominates

the diurnal rain cycle. Over northern midlatitude

continents D/NL is smallest during boreal summer

JJA, reflecting the more solar convection-driven

precipitation during those months than the frontal

precipitation systems that characterize the northern

winters of DJF. This is also, to a lesser degree, ap-

parent in the northern midlatitude oceans but with

opposite sign.

More generally, qualitative inspection of Fig. 5

reveals a tendency for the magnitude of the day/night

variability to follow the seasonal cycle, with greater

variability during the local summer. This is less evident

in the D/NX, where there is less day/night variability in

the relative spacing of precipitation systems than in PoP

(1) and scale length. The mean magnitudes of D/N are

displayed in Table 3 for each hemisphere for JJA and

DJF. In all cases, day/night variability is greatest in the

hemispheric summer. This is likely caused by the in-

creased convective precipitation during the summer

than during the winter (Yang and Smith 2008). Strati-

form precipitation responds less to diurnal solar forcing

than convective precipitation.

Seasonal variations in the spatial character of pre-

cipitation are also evident in the distribution parameters

in most areas. Figure 6 presents monthly shape factors

and scale lengths for three regions that exhibit distinct

seasonality in the distribution of precipitation. The be-

havior of the distribution parameters in the tropical west

Pacific is also presented as a reference since this region

does not exhibit strong seasonal variations throughout

the region as a whole. Zonal fluctuations in precipitation

volume maxima (Chen et al. 2003; Grose et al. 2014)

associated with the seasonal migration of convection

within the tropical west Pacific are generally contained

within the boundaries defined in this study and are there-

fore not obvious in Fig. 6. Figure 6a shows variations

in shape factor represent seasonal changes in the relative

spacing of precipitation events. For example, the SEP

experiences a range from 0.81 in the austral summer to

about 0.62 in the austral winter. This range denotes a

regime change from more evenly spaced precipitation

events to a more clustered spatial distribution. The SEP

cycle is out of phase with the Amazon, which experi-

ences its maximum uniformity during the premonsoon

months of August, September, and October (Williams

TABLE 3. Mean magnitudes of day-to-night ratio from Fig. 5 as

a function of season and hemisphere. Hemispheric summer is listed

above winter in each case. Day/night variability is greatest in local

summer in each hemisphere and variable.

D/NPoP D/NX D/NL

Northern Hemisphere 0.21 JJA 0.04 JJA 0.48 JJA

0.11 DJF 0.03 DJF 0.24 DJF

Southern Hemisphere 0.30 DJF 0.04 DJF 0.63 DJF

0.15 JJA 0.03 JJA 0.37 JJA
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et al. 2002). In Fig. 6b, the Amazon exhibits the greatest

change in scale length throughout the year, with the wet

season (December–March) characterized by much smaller

systems (Petersen et al. 2002; Williams et al. 2002) and

the dry season featuring further widespread systems with

scale lengths increasing to about 2000km associated with

monsoonal circulations. Scale length seasonal variability in

other regions tends to be smaller than in the Amazon, al-

though the SEP undergoes changes by a factor of 2, rang-

ing from about 130 to 300 km between the periods of

July–September and January–March, respectively. Precip-

itation in the tropical east Pacific also exhibits a seasonal

cycle in scale length but at a smaller relative range from

;250 to ;350km.

6. Variability in the SEP stratocumulus to trade
cumulus transition zone

The spatial characteristics of precipitation in the SEP

exhibit a particularly strong seasonality that is worthy of

closer inspection. Of particular significance is the geo-

graphic transition from predominantly stratocumulus to

trade cumulus cloud regimes westward from the South

American coast into the Pacific Ocean west of the SEP.

The mean boundary layer winds are southerly in this

region, so the transition outlined here is geographic

and therefore does not follow the evolution of individ-

ual precipitation systems. This SEP transition zone

(SEPTZ) is marked by decreasing lower-tropospheric

stability (LTS), as shown in Fig. 7a, and increasing

boundary layer heights as ocean surface temperatures

warm away from the ocean upwelling near South

America. Figure 7b outlines the SEPTZ over an exam-

ple GOES visible image showing characteristic open-

cellular convection at the western edge and closed-cell

stratocumulus clouds at the eastern edge.

Figure 8 shows the variation in shape factor and scale

length parameters across the SEPTZ. Resolution-

degraded precipitation flags are sorted into 2.508 longi-
tudinal bins for the geographical range illustrated on the

map in Fig. 7. In general, precipitation events are more

evenly spaced (indicated by a larger shape factor) in

the summer than in the winter across the SEPTZ. This is

consistent with the results of Rapp et al. (2013), who

used CloudSat precipitation estimates to show that more

precipitation falls in the austral winter (JJA) months

than in the austral summer months. In addition to the

increase in precipitation during the JJA season, there

is also a difference in the spatial distribution of the rain

events, with winter precipitation becoming more clus-

tered, causing increased variability in the distances

between CPEs.

Of particular interest in Fig. 8 is the SEPTZ from

trade cumulus to stratocumulus, observed here roughly

between longitudes from about 2508 to 2708E. The

westward transition from irregularly spaced to more

uniformly spaced precipitation events is apparent in

both seasons but the corresponding reduction in scale

length is much more distinct in austral winter (JJA).

Sharp increases in scale length at the eastern limits of the

region are likely a result of constructive effects from the

shallow boundary layers and aerosols from the coast of

South America. The CloudSat 2CPC algorithm exploits

the attenuation-corrected reflectivities in the fourth

range bin above the surface because of the possibility of

FIG. 6. The annual cycles of distribution parameters for 2007–10

for the Amazon (158S–08, 2908–3108E), tropical east Pacific (108S–
108N, 2208–2808E), tropical west Pacific (108S–108N, 1308–1908E),
and SEP (258–108S, 2508–2848E) regions. Solid lines show the mean

monthly distribution parameter of the four years, and the shaded

area bounds the maxima and minima from 2007 to 2010.
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surface clutter in the lowest range bins (Haynes et al.

2009). Burleyson et al. (2013) find drizzle to be less

frequent nearer the coast along 208S when using a

shipborne W-band radar during the VAMOS Ocean–

Cloud–Atmosphere–Land Study Regional Experiment

(VOCALS-REx) field campaign. They note that the

decrease in drizzle rates near the coast is associated with

higher aerosol concentrations and shallower boundary

layers. In addition, Leon et al. (2008) showed that, be-

cause of surface clutter effects, the low cloud tops near

FIG. 7. (a) Mean and 10% and 90% quantile ranges of MERRA LTS across the SEPTZ in austral summer (DJF)

and winter (JJA). LTS is aggregated in 2.58 longitudinal bins and filteredwith a [1 3 1] moving average for consistency

with Figs. 8 and 9. (b)GOES-13 image from 1445UTC 13Dec 2014 showing a transition from stratocumulus to trade

cumulus convection to the west. Region bounds for the SEPTZ (red) and Amazon (green) are shown for reference.

FIG. 8. Local summer and winter SEPTZ distribution parameters and their drivers. Precipitation data within the

SEPTZ (258–108S, 2208–281.258E) are partitioned into 2.58 zonal bins and the distribution parameters are computed

via Eq. (1). Thin solid lines show the [1 3 1] moving average of the 4-yr mean of CloudSat orbits passing over each

area. Shaded regions bound the 4-yr extremes observed at each location.
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the coast affect CloudSat detections more often than

areas with higher cloud tops. These effects suggest that

the long scale lengths east of 2808E likely result from a

combination of both decreased drizzle frequency and

decreased detection rates due to low boundary layer

heights and the precipitation inhibition aerosol effect.

Figures 4 and 8 show that the center of the signal from

the SEP stratocumulus region shape factors occurs near

2708–2758E. Moving west from this area, shape factors

steadily rise before reaching a value characteristic of

trade cumulus at 2408E. Wood and Hartmann (2006)

report a similar general east-to-west progression of

closed- to open-cell convection across the SEPTZ. In

their case as well as here, the gradual transitions are

representative of the averages of many sharp transitions

in cloud and precipitation distributions as illustrated by

Fig. 7b.

The westward progression from stratocumulus POC-

type precipitation at around 2708E to more isolated

cumulus precipitation is well documented (Wood and

Hartmann 2006), and the analysis presented here dem-

onstrates that the scaling approach outlined above

captures the structural differences associated with dif-

ferences in atmospheric stability across the SEPTZ

with a relatively simple two-parameter exponential dis-

tribution. This is further demonstrated by Figs. 8c–e in

collocated measures of CoV, PoP(1), and CPE density.

In the eastern stratocumulus regime, the CoV is rela-

tively high but decreases westward with the transition

to open cumulus causing the shape factor to increase. In

the winter months, the scale length increases westward

across the SEPTZ as the precipitation frequency and

CPE density decrease. Austral summertime scale

lengths do not exhibit a defined trend across the region,

indicative of the fact that the PoP(1) andCPE density do

not vary appreciably. The combination of changes in

shape factor and scale length therefore indicates that

while the prevalence of precipitation does not change

across the SEPTZ in the summer months, the relative

spatial distribution of the existing CPEs varies from east

to west where eastern systems have a higher relative

variance in their locations and the western systems are

more evenly spread geographically.

7. Diurnal variability in the stratocumulus to
cumulus transition zone

Rapp et al. (2013) found that CloudSat observes more

precipitation in the SEP during its nighttime overpasses

(;0130 LT) than during the daytime (;1330 LT). These

differences extend to the spatial distribution of the pre-

cipitation as well. Figure 9 presents the differences in

scaling distribution parameters when they are segre-

gated into ascending or descending orbits that corre-

spond to daytime and nighttime conditions, respectively.

The day-minus-night differences in shape factor in-

crease from west to east, with the largest differences

(absolute and relative) associated with stratocumulus in

FIG. 9. As in Fig. 8, but showing day-minus-night differences between ascending (;1330 LT) and descending

(;0130 LT) overpasses.
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the far eastern side of the region. This corresponds to the

fact that, in both seasons considered, there is greater

variability in CPE spacing at night in the eastern stra-

tocumulus region whereas there is greater variability in

CPE spacing during the day in the trade cumulus region

in the west. The scale length also exhibits day–night

variations from west to east across the SEPTZ, espe-

cially in the summer months where scale lengths can

differ by more than 700kmwithin the eastern areas near

the South American coast. CloudSat observes very little

near-coast precipitation during its daytime overpasses.

Geographic changes in summer scale length follow the

changes in the day–night PoP(1) and CPE density, but

the winter day–night scale length differences do not.

This is due to the smaller relative day–night changes in

PoP(1) and CPE density during the winter than in the

summer. Day–night differences in PoP(1) and CPE

density are similar between the seasons, but the relative

day–night changes in PoP(1) and CPE density are much

greater in the summer months than the winter months,

so day–night differences in scale lengths are strongest

during the summer.

8. Amazon wet-season connection to zonal wind
speed

Figure 4 demonstrates that the Amazon is somewhat

distinct from other land surfaces in that it exhibits scale

lengths that more closely resemble oceanic precipitation

than continental precipitation. Other studies document

similar findings over the Amazon during the local wet

season in the westerly wind regime. Williams et al. (2002)

and Petersen et al. (2002), for example, find that pre-

cipitation during the wet-season westerly regime is more

widespread, there are fewer lightning flashes, cloud tops

are lower, and there are fewer cloud condensation nuclei

compared to surrounding land areas and to other times of

the year. This has led to the moniker AGO for the wet-

season westerly wind regime. Williams et al. (2002) also

find that the westerly regime is associated with more

widespread precipitation events rather than the isolated

convection that is more common during the dry season. It

is reasonable to ask whether similar subseasonal re-

lationships to local zonal wind direction can be deduced

from the precipitation distribution parameters.

Figure 10 shows the distribution parameters and their

associated spatial properties composited with Modern-

Era Retrospective Analysis for Research and Appli-

cations (MERRA) zonal wind strength within the

geographic region bounded by 158–98S, 2958–3108E
(consistent with Petersen et al. 2002). The shape factor

andCoV show little dependence on the large-scale zonal

wind speed and direction, but the scale length correlates

strongly as do the native-resolution PoP(1) and CPE

density. The Amazon westerly regime is marked in Fig. 10

by shorter scale lengths and high PoP(1) and CPE densi-

ties associated with widespread precipitation, which is in

agreement with Petersen et al. (2002).

FIG. 10. Amazon wet-season distribution parameters and their associated spatial properties. Precipitation data

composited by MERRA 800-hPa zonal wind strength are fitted with Eq. (1), and the 95% confidence intervals are

computed via BCa bootstrap resampling, as explained in the text.
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Because the latitude range of the data selected for

Fig. 10 is limited to 68, additional carewas taken to ensure
each plotted value contained enough data to hold un-

certainties to an acceptable level. The shape factor in Eq.

(1)makes the regressions very flexible to variations in the

precipitation data so confidence intervals based on errors

in the fit, alone, tend to be too small to encompass the

sampling uncertainty inherent in using discrete CloudSat

overpasses. To better represent sampling uncertainties,

the 95% confidence intervals shown in Fig. 10 were

computed using the bias-corrected and accelerated (BCa)

bootstrap method. An outline for BCa bootstrap confi-

dence intervals can be found in Wilks (2011) and is

summarized here.

The bootstrap resampling technique (Efron 1979)

consists of drawing N random samples with replacement

from the originalN overpasses. The number of overpasses

belonging to eachAmazon zonal wind bin ranges from 49

to 128, with more overpasses near zero zonal wind speed.

Because the latitude span is so short, resolution-degraded

precipitation flags from each overpass are converted to

PoP(d) and treated as a single measurement with a single

degree of freedom in the collection of overpasses. Collo-

cated MERRA zonal winds are also averaged, and the

overpasses with zonal wind standard deviation greater

than 99% of other overpasses (standard deviation of

about 4.1ms21) are discarded to ensure that the mean

winds represent the precipitation regime throughout the

overpass.

After the resampled distribution is created for an in-

dividual zonal wind bin, the BCa confidence intervals

(Efron 1987; Efron and Tibshirani 1993) are formed.

The BCa process makes no assumptions about the

symmetry or bias of the sample distribution and so the

resulting confidence intervals are not necessarily sym-

metric and do not necessarily correspond to CDF values

of 0.025 and 0.975 for an alpha 5 0.95 two-tailed confi-

dence level. This is most relevant for the scale length,

whose distribution is generally asymmetric with a tail

toward longer lengths, especially over land. The accel-

eration parameter corrects for asymmetric or skewed

sampling distributions and is computed from jackknife

estimates of the parameter of interest (e.g., shape factor,

CPE density). The BCa confidence intervals are much

more representative of sampling uncertainty than theR-

square fit errors, alone, but the significance of the re-

lation between Amazon wet-season scale length and

zonal wind speed is preserved.

9. Discussion

This study introduces a new method of describing

variations in precipitation occurrence as a function of

spatial resolution using an exponential structure func-

tion with two free parameters. The shape factor X

describes the relative spatial locations of distinct pre-

cipitation events, while the scale length L describes the

spatial density of the CPEs and their size [via PoP(1)].

These attributes of precipitation constitute key factors

governing local hydrologic cycles, surface runoff

models, latent and radiative heat distributions, and sta-

tistical downscaling.

Global and seasonal variations in the shape factor and

scale length generally follow well-understood patterns

of frequently used measures of large-scale thermody-

namics and also correlate with local meteorological

weather regimes. For example, the distribution param-

eters both exhibit variations consistent with the east–

west transition from stratocumulus to trade cumulus

cloud types in the SEPTZ. The shape factor and scale

length capture clear distinctions between the highly

variable stratocumulus-topped precipitation in the east

and the open-cell convection in the west. These differ-

ences can be directly related to differences in charac-

teristics of the spatial distribution of precipitation: CPE

relative spacing, PoP(1), and the CPE density. Fur-

thermore, the scale lengths over the Amazon during the

wet season are found to correlate with local zonal wind

speed, with westerlies favoring high PoP(1) and large

areal extent, consistent with previous reports of wet-

season regime differences.

The high sensitivity of the W-band CPR aboard

CloudSat to detecting precipitation is central to this

study. Unfortunately, the one-dimensional nature of

CPR observations limits its instantaneous measure-

ments to the nearly meridional direction at low and

midlatitudes. This could introduce a bias in areas where

precipitation exhibits a preferred orientation and is ex-

pected to be most relevant over large landmasses that

experience preferential directionality, as is the case with

frontal systems. The application of this procedure to

stochastic downscaling would benefit greatly from

knowledge of the 2D structure of occurrence, which is

something a one-dimensional precipitation flag cannot

offer. The newly launched Global Precipitation Mea-

surement (GPM) spacecraft carries the dual-frequency

precipitation radar (DPR) at Ku and Ka bands. The

global coverage and increased sensitivity over the

TRMM PR (Ka band versus Ku band) could assist this

technique, but with a sensitivity of 12 dBZ and a 4-km

FoV, some broken and light precipitation will likely still

escape detection, especially in areas characterized by

light or frozen precipitation, leading to uncertainty in

the steep slopes at fine resolutions in Fig. 1 and Fig. 2.

The analysis presented here has potentially wide-

ranging applications into understanding the spatial
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distribution of precipitation. Hydrologic forecasters re-

quire high-resolution information of the structure of

precipitation to predict the impact of flood events. Such

high temporal and spatial resolution is not yet available

from large-scale forecast models, so precipitation data

must be downscaled either dynamically or statistically to

the catchment scale, often only a few square kilometers.

Themethod introduced here is computationally efficient

and is therefore possible to implement without the ad-

ditional expense of an MMF, nested CRM, or a large-

eddy simulation. The global modeling community may

also use this methodology to parameterize subgrid var-

iations in precipitation within a grid box, where spatial

distributions of precipitation events are created sto-

chastically and are influenced by estimated shape factors

and scale lengths. Though the insights provided by ex-

amining the variation of these parameters in the south-

central Amazon and SEPTZ are not entirely new in light

of previous studies, they confirm that distribution pa-

rameters are often correlated with local state variables

that are already estimated at the grid box and time step

scale (e.g., CAPE, wind speed, surface temperature).

Analyses of more general drivers of X and L for such

global modeling applications is ongoing.
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