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Abstract The ability of ground-based in situ and remote sensing observations to constrain microphysical
properties for dry snow is examined using a Bayesian optimal estimation retrieval method. Power functions
describing the variation of mass and horizontally projected area with particle size and a parameter related
to particle shape are retrieved from near-Rayleigh radar reflectivity, particle size distribution, snowfall rate,
and size-resolved particle fall speeds. Algorithm performance is explored in the context of instruments
deployed during the Canadian CloudSat CALIPSO Validation Project, but the algorithm is adaptable to other
similar combinations of sensors. Critical estimates of observational and forward model uncertainties are
developed and used to quantify the performance of the method using synthetic cases developed from
actual observations of snow events. In addition to illustrating the technique, the results demonstrate that
this combination of sensors provides useful constraints on the mass parameters and on the coefficient of
the area power function but only weakly constrains the exponent of the area power function and the shape
parameter. Information content metrics show that about two independent quantities are measured by the
suite of observations and that the method is able to resolve about eight distinct realizations of the state
vector containing the mass and area power function parameters. Alternate assumptions about
observational and forward model uncertainties reveal that improved modeling of particle fall speeds could
contribute substantial improvements to the performance of the method.

1. Introduction

Knowledge of snow microphysical properties is essential for the remote sensing of snowfall using space- or
ground-based radar observations. A primary difficulty in such remote sensing problems is the nonunique
relationship between radar reflectivity and snowfall rate, a relationship determined by the unknown micro-
physical properties of the observed snow. With even the simplest of representations for these properties,
the number of unknown microphysical parameters associated with a single radar bin results in a significantly
underconstrained problem.

Prior information may be used to address such an underconstrained problem. Potentially useful a priori
microphysical information includes descriptions of snow particle mass and horizontally projected area as
functions of particle size, so-called m — D and A — D relationships. These relationships have often been
expressed using power functions in studies of particles observed at the surface, particularly for mass. Nakaya
and Terada [1935] developed m — D power functions with integer exponents for six broadly defined particle
habits. More recent studies have reported m — D power functions explicitly [e.g., Locatelli and Hobbs, 1974;
Zikmunda and Vali, 1972, 1977; Mitchell et al., 1990] or implicitly via parameterizations of particle density as
a function of size [Magono and Nakamura, 1995; Heymsfield, 1972]. The development of A — D power func-
tions has been somewhat less common. Davis [1974] used crystal images and dimensional data from earlier
ground-based studies to produce A—D power functions, again for various habits. Heymsfield and Miloshevich
[2003] used ground- and aircraft-based observations from multiple sources to form power functions for area
ratio, which are simply transformable to give area. Mitchell [1996] evaluated and compiled m — Dand A — D
relationships from much of the literature available at the time.
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Determining the parameters of these functions has typically involved analysis of single-particle observa-
tions [e.g., Kajikawa, 1972; Locatelli and Hobbs, 1974; Mitchell et al., 1990] or, for mass, bulk approaches in
which particle size distributions are observed and related to an integral property of the distribution like
accumulated precipitation or radar reflectivity [e.g., Brandes et al., 2007]. Few such studies evaluated mass
and area properties simultaneously, so physical consistency between area and mass parameters has not
been assured. As a result, information regarding covariances between parameters, which can be an impor-
tant retrieval constraint, has been lacking. Especially for the single-particle studies, sample sizes have been
small and the studies have been performed primarily in mountain locations, limiting the characterization of
the uncertainties and the environmental variability for the estimated parameters.

This work examines a novel application of the optimal estimation retrieval method [Rodgers, 2000] that
estimates dry snow microphysical properties using intensive ground-based observations of snowfall. Obser-
vations of snowfall rate, snow particle size distribution, size-resolved fall speeds, and 9.35 GHz (X-band)
radar reflectivity are used to estimate the parameters of power functions describing particle mass and hori-
zontally projected area as functions of particle size. The retrieval results are expressed in terms of probability
density functions (PDFs) that define the expected values and uncertainties for these parameters. This work
tests the retrieval using synthetic cases constructed using observations from a snow measurement field
campaign, then characterizes the performance of the observing system using information content metrics.
Although several studies have suggested power functions with size-varying parameters [e.g., Mitchell, 1996;
Matrosov, 20071], this work uses power functions whose parameters are invariant with size to construct the
synthetic test cases and to define the retrieved state. Doing so provides a fundamental test of retrieval per-
formance and establishes a basis for future work in which the synthetic cases or retrieved state is described
using more complex relationships. Section 2 reviews the optimal estimation method and provides the phys-
ical basis for the retrieval. Section 3 describes the microphysical quantities to be retrieved and the a priori
knowledge of their distribution. Section 4 defines the observation vector used by the retrieval and the syn-
thetic cases used to test the retrieval performance. The forward model and the uncertainties it contributes
to the retrieval process are quantified in section 5. Finally, retrieval performance is characterized in terms of
several different information content metrics in section 6.

2. Retrieval Method

Several recent field experiments focusing wholly or in part on cold season precipitation (the Canadian
CloudSat/CALIPSO Validation Project, C3VP [Hudak et al., 2006a], the Light Precipitation Validation Exper-
iment [Petersen et al., 2011], and the Global Precipitation Mission Cold-Season Precipitation Experiment
[Hudak et al., 2012]) operated highly instrumented ground stations for measuring precipitation. The
measurements provided by these stations have included near-Rayleigh radar reflectivity, particle size distri-
butions, size-resolved particle fall speeds, and precipitation rates. At its primary ground facility, for example,
C3VP deployed the McGill University Vertically Pointing X-band Doppler Radar (VertiX) [Fabry and Zawadzki,
1995], the National Aeronautics and Space Administration’s Snow Video Imager (SVI) [Newman et al., 2009],
Colorado State University’s 2-D Video Disdrometer (2DVD) [Thurai and Bringi, 2005], and a Vaisala FD12P
[Vaisala, 2002] supplemented with other precipitation measurements. Figure 1 shows typical observations,
less 2DVD fall speeds, for a C3VP lake effect snow event on 28 January 2007.

These measurements depend on the underlying microphysical properties of the observed snow. The mea-
sured quantities are not fully independent, and the relationships between the microphysical properties and
the measurements are complex. Even with simple representations of the microphysical properties, in most
cases such a suite of measurements does not fully constrain the microphysics, and so a priori assumptions
are required to make the retrieval problem tractable.

Optimal estimation (OE) [Rodgers, 2000] provides a method to estimate these underlying microphysical
properties and to incorporate a priori constraints. OE employs an explicit forward model that defines a func-
tional relationship between the observations y and the quantities to be retrieved, or state variables, x. The
forward model F(x, b) gives an approximation of the true physical relationship between x and y; thus, there
are uncertainties associated with both the observations y and the forward modeled quantities F. Allowing
for these uncertainties gives the statement of the forward problem:

y= F(x,b) + ¢, (1)
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Figure 1. (top) VertiX, (middle) SVI, and (bottom) FD12P observations for the 28 January 2007 snowfall event.

where € represents the total uncertainty, due both to measurement uncertainty and to uncertainties in the
forward model, and b are other influence parameters, not to be retrieved, where the tilde indicates that
these parameters may be known imperfectly.

To find the retrieved estimate X of the state, the cost function

~ T _ ~
D(x,y,%,) = (y —F(x,b)) S_' (y—F(x,b))
+ (x—xa)TSa’1 (x—x,) )
is minimized with respect to x [Rodgers, 2000]. The cost function incorporates prior information about the
state vector in the form of expected values x,, and their covariances S,.

The covariance matrix S, represents the combined measurement and forward model uncertainties. The
total error € (1) includes contributions from measurement uncertainty, forward model errors, and uncertain
influence parameters [Rodgers, 2000]:

€ = ey + AF(x,b) + %(b -b). 3)

In principle, these errors may consist of both systematic biases and random components, but the retrieval
approach assumes that recognized biases have been corrected to the extent possible and characterizes
residual random errors by the covariance matrix S,

S.=S,+S+Sg, (4)
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where Sy, Sr, and S; represent measurement, forward model, and influence parameter error covariance
matrices, respectively. Diagonal elements in S, represent variances due to measurement noise, forward
model uncertainties, and variability in all prescribed influence parameters while off-diagonal elements
represent correlations between these quantities.

Provided that the forward model is not excessively nonlinear, the vector X can be found by
Newtonian iteration:

X =%+ (S, + KI.TS:WK,,)_1
- [KTs' (y — F(x;. b)) — S, (%, —x,)] . (5)

where K is the Jacobian of the forward model with respect to the state vectorand K, = K(X;). At
convergence, the solution X is obtained and its covariance matrix $, is calculated as

§, = (K's'k+s;") ", ©)

where K is the forward model Jacobian evaluated at the retrieved state and % and §, describe a multivariate
normal distribution. Strong nonlinearity may cause nonconvergence or convergence to a spurious state. To

test for spurious convergence, a chi-square parameter is calculated from the final state. A value less than the
number of measurements indicates reasonable convergence [Rodgers, 2000].

This approach presupposes that the model-measurement uncertainties and the a priori distribution of the
state variables are described by multivariate normal distributions. Lack of detailed knowledge of the uncer-
tainties and the a priori state may make this supposition questionable; however, considering continuous
distributions with constrained widths, the normal, or Gaussian, form maximizes the entropy of the distri-
bution [Rodgers, 2000; Shannon and Weaver, 1949], so assuming the normal form introduces the minimum
possible information about the uncertainties and the prior state. To choose otherwise would introduce
additional constraints on the retrieval which are generally not justified.

2.1. Retrieval Performance Metrics
Several metrics which provide quantitative information about the performance of the retrieval can be
determined from the optimal estimation results.

The Shannon Information Content, H, measures the reduction of uncertainty in the retrieved state in
comparison to the a priori uncertainty [Rodgers, 2000]:

c-—1
S.S,

1
H= > log, . 7

H quantifies differences in the entropies [Shannon and Weaver, 1949] of the distributions described by S,
and $,. Rodgers [2000] interprets H in terms of changes in the volume enclosed by a surface of constant
probability, and LEcuyer et al. [2006] further characterize H as a measure of the resolution of the observing
system. When expressed using base-2 logarithms, H then gives the binary bits of resolution provided by the
measurements, suggesting the measurements can resolve 2" states within the a priori state space.

The degrees of freedom for signal, d,, describes the number of independent quantities provided by the mea-
surements which are significant compared to the combined forward model and measurement uncertainties.
The degrees of freedom for signal can be shown to be equal to the trace of the A matrix [Rodgers, 2000].

The averaging kernel matrix, or A matrix, is given by
PPN =1 ATe 1
A= (K's'’K+s;') K'sT'k. ®)

The nearer A is to diagonal, the more directly a particular element of x is determined by its particular true
state and a priori value. Diagonal values near 1.0 indicate that the retrieved value is determined more
completely by the true state rather than the a priori.
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2.2. Physical Basis

Typical measurements, including radar reflectivity, size-resolved fall speeds, and snowfall rate, were intro-
duced in section 2. Provided the radar wavelength is such that scattering by snow particles follows the
Rayleigh approximation for spheres, Atlas et al. [1953] showed that low-density, irregularly shaped dry snow
particles can be treated as equal volume ice spheres to calculate radar scattering properties with small error.
For the short path lengths and observing conditions applicable to these observations, attenuation by gases
and snow particles should be negligible [Matrosov, 1998]. Reflectivity for the Rayleigh sphere approximation
can then be written as [e.g., Wood et al., 2013]

KII?> [ Ommax
Ze= 25 " ’”2/ "™ Ny [m (Dy)]? dDy. ©)
z pice ||Kw|| Dyt,min

where Dy, is the particle maximum dimension, m (D,,) is the size-varying particle mass, p,. is the density of
solid ice, K,, = (nﬁq - 1)/(nﬁq + 2) where Nig s the complex refractive index of liquid water, K; = (nizCe -1/
(n%_ + 2) where n,, is the complex refractive index of ice, and N(D,) is the particle size distribution.

ice ice

While snow particle size may be measured several different ways (e.g., melted diameter and equivalent area
diameter), D, is more closely related to the sizes measured by optical disdrometers and aircraft 2-D probes
than other measures. Additionally, explicit physical models for fall speed depend on a particle dimension
which is typically taken to be D,, [Mitchell and Heymsfield, 2005].

The fall speed relationship developed by Mitchell and Heymsfield (hereafter MHO5) is physically based and
intended to accommodate larger particles like aggregates. The Reynolds number Re is

52 4+/X(D

Re(Dy) = - <1+%
§21/C
0 0

with parameters a, = 0.0017 and b, = 0.8; §, is a unitless constant related to boundary layer thickness
and C is the limiting drag coefficient under conditions dominated by pressure drag. Bohm [1989] estimated
values of C; = 0.6and §, = 5.83.X(D,,) is a dimensionless group which is often identified as the Best

or Davies number in atmospheric science literature [e.g., List and Schemenauer, 1971; Bohm, 1989; Mitchell,
1996] but which is equivalent to the Archimedes number used to characterize the ratio of gravitational to
viscous forces acting on a particle or fluid parcel embedded in a fluid [Mory, 2011]. For nonspherical particles
with buoyancy force ignored, the Best number is expressed in terms of m(D,,) and A,(Dy) as [Mitchell, 1996]

12 2
> —1| —a X", (10

ZDszag m (DM)

X(Dyy) = C4Re* =
u* A, (Dy)

) (11

where C; is the drag coefficient, A, (DM) is the size-varying particle horizontally projected area, p, is the air
density, u is the viscosity, and g is gravitational acceleration. Obtaining Re from (10), the fall speed can be
found from

V(D) = — 42 (12)

Fall speed depends explicitly on particle size D,,, the particle mass, the projected area, air density, and air
viscosity, as well as the parameters 6, C,, a,, and b,. Treating air as an ideal gas allows density and viscosity
to be calculated from air temperature T and pressure p via Sutherland’s formula [Sutherland, 1893].

Snowfall rates are expressed using the size distribution, particle masses, and particle fall speeds V(D) as

DM.max
p=-_L N (Dy) m (Dy) V (Dyy) dDy (13)
p“q DM,min

where P is in units of liquid water depth per unit time (e.g, mm h~") and Piiq is liquid water density.
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Table 1. Estimates of the A Priori State for the C3VP 3. The State Vector

A . A
Microphysics Retrieval The preceding relationships show that, given

Mean  Correlation  Variance  Covariance measurements of the particle size distribution,

In(@) —6.181 0.753 2474 0.585 these observations provide information about

B 2.067 0.244 the size-dependent masses, m (D), and horizon-
In(y) -1.556 0.836 0.392 0.118 tally projected areas, A, (D), of snowfall. These
o 1.785 0.0507

properties are often described using power func-
tions of the particle maximum dimension [e.g.,
Mitchell, 1996]

aValues are appropriate for cgs units.

m (Dy) = aDl, (14)
A, (Dy) = D, (15)

The microphysical parameters to be retrieved, then, are the coefficients and exponents of the power
functions for mass and horizontally projected area.

Values for a and y are expected to range over 2 or more orders of magnitude, so these variables are log
transformed. In practice, the masses and areas calculated by these functions are capped to be no larger
than the mass of a solid ice sphere and the area of a circle of a given particle size. For the values reported
here, cgs units are used. With Dy, in centimeters, units for « and y are such that m is given in grams and A, in
square centimeters.

Particle sizes observed by imaging disdrometers are not equal to D,, due to the effects of particle orienta-
tion and viewing geometry. Disdrometer size distributions, then, are not based on D,, but rather on some
observed particle size D,.. Wood et al. [2013] introduced a parameter ¢ to convert observed size distribu-
tions into distributions based on D,,. Since ¢ may vary significantly depending on the disdrometer and snow
particle shape, it is added to the state vector to be retrieved, giving
T

x=[In(@) B In(y) o ¢] (16)

3.1. A Priori Estimates of the State Vector Distribution

Prior information about the distribution of values for the state vector is introduced through the mean

and covariance matrix of a multivariate normally distributed a priori PDF defined by x, and S,,. Prior val-
ues of In(a), B, In(y), and o, their variances, and covariances were estimated using the results from prior
studies of snow microphysical properties and results from a new analysis [Wood, 2011] of snow particle
observations originally made by Kajikawa [Kajikawa, 1972, 1975, 1982]. Mass-dimension parameters are
taken from Zikmunda and Vali [1972], Locatelli and Hobbs [1974], and Mitchell et al. [1990], and the indepen-
dent relationships from Mitchell [1996]. Area-dimension parameters include results from Heymsfield [1972],
Mitchell [1996], and Heymsfield and Miloshevich [2003], omitting those from the latter study pertaining to the
Kajikawa observations to avoid duplication.

The estimated parameters from these studies were treated as samples drawn from the environmental dis-
tribution of the state vector, x, and expected values of In(a), §, In(y), and ¢ were calculated along with their
variances and covariances [Wood, 2011]. Although some information regarding snowflake geometry or habit
might have been used from the prior studies to construct habit-dependent a priori PDFs, this habit infor-
mation will likely be lacking in typical remote sensing observations. Therefore, all prior observations were
combined to construct a habit-independent a priori PDF. Because studies from which simultaneously esti-
mated mass- and area-dimension power function parameters can be determined are lacking (the Kajikawa
observations are a rare exception), covariances between In(a) and In(y), In(e) and o, g and In(y), and g and
o were omitted (Table 1).

The resulting distribution depends on the frequencies of occurrence of various particle types in the sample.
The number of studies supplying these data is small and, for studies using ground-based observations, the
study sites were often in mountainous locations. As a result, the sample may not accurately represent the
frequencies of occurrence in the environment, and the properties for a given particle type may also not be
representative of particles found in the broader environment. Further, the parameters provided by these
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Figure 2. VertiX reflectivities versus FD12P snowfall rates from the 5 min .
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ground level, and snowfall rates have been scaled to match double fence ~ sample and 76% of the area sample),

intercomparison reference (DFIR) accumulations. Dot colors indicate the followed by plates, graupel, and

slope of an exponential distribution fitted to the observed size distribution.  columnar particles.

Boxes indicate boundaries used to define snowfall regimes, and large dots

show averaged reflectivities and snowfall rates for each regime. Lacking direct observations of ¢, a
priori values for ¢» and its variance
were estimated based on the particle

modeling described in Wood et al. [2013] as 0.825 and 0.1252. The value 0.825 is appropriate based on the

use of SVI feret diameter and a typical particle aspect ratio of 0.60 to 0.70 [Korolev and Isaac, 2003]. A priori

covariances between ¢ and other state variables are unknown and were set to zero.

4. Observation Vector and Synthetic Cases

The observations to be fitted by the retrieval are the reflectivity, the snowfall rate, and the fall speeds. To
avoid giving excess weight to the potentially numerous fall speed observations, representative fall speeds
are used for three predetermined size (D,;) ranges: V,: 4.0 + 0.50 mm, V;: 2.0 + 0.25 mm, and V,: 1.0 +
0.25 mm. These ranges were chosen on an ad hoc basis to describe the shape of a typical fall speed curve
with enough separation in size to minimize redundant information. The wider bin at the largest size was
needed to ensure an adequate number of particle in most of the retrievals.

Given the three fall speeds, two fall speed differences are synthesized for use in the observation vector:
AV, =V, -V, and AV, =V, — V,. The resulting observation vector uses V,, and the two differences, giving

y=[ze PV, AV, AV, ] (17)

Here and in the remaining text, Ze is in decibel units unless noted otherwise.

4.1. Synthetic Cases

The retrieval is evaluated by applying it to synthetic cases derived from the C3VP observations. The cases are
based on analyses of VertiX reflectivities, FD12P snowfall rates, SVI size distributions, and 2DVD fall speeds
for four snowfall events that occurred on 6 and 7 December 2006, 28 January 2007, and 14 February 2007.
The analyses, details of which are given in section A, provide estimates of coincident 5 min averaged obser-
vations and their uncertainties for these events. The cases were constructed using five snowfall regimes
selected to encompass the extent of conditions observed during C3VP. These regimes were selected as
shown in Figure 2 using ranges of radar reflectivity and snowfall rate. The regimes represent conditions
ranging from light snow with low reflectivity to heavy snow with corresponding high reflectivity, as well as
several intermediate conditions.

Each regime was characterized by values for radar reflectivity, snowfall rate, size distribution parameters,
and temperature (Table 2). For a particular regime, the characteristic values for radar reflectivity, snowfall
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Table 2. Characteristics of Synthetic Regimes

Ze P log (Np) y) T u
Regime Description dB)  (MMLWEh™") m3mm™") @mm™") (K 9Ims")
A Very light snow 5.54 0.13 417 2.81 263. 3.1
B Light snow 16.0 0.405 3.66 1.31 261. 3.2
C Moderate snow, low dBZe 22.0 1.02 3.42 0.835 263. 2.6
D Moderate snow, high dBZe  28.9 1.11 2.81 0.517 271. 3.0
E Heavy snow 24.8 2.70 443 1.017 265. 2.1

rate, and temperature were determined as simple means of the observations within the associated subset.
For the size distribution parameters, an exponential size distribution was fitted to each SVI size distribution
in the subset, giving a range of values for the intercept Ny (D) and slope A(D,,). The characteristic values
for the size distribution parameters were then determined as the simple means of these fitted values and
used to compute a synthetic, discrete SVI size distribution N (D, ) for the regime. To reduce the potential
for measurement errors with the surface in situ observations, data were omitted if coincident wind speed
observations exceeded 5 m/s. Higher reflectivities and higher snowfall rates were associated with broader
distributions (smaller values of 1) (Table 2). Corrections were made to account for the separation between
the radar and surface in situ observations (section A1); however, this separation does increase the poten-
tial for the radar measurement to be inconsistent with the surface observations, and uncertainties were
adjusted as described.

For each regime, synthetic cases were constructed by applying a predefined set of assumed values for the
exponents of the mass- and area-dimension relationships, f and ¢, and for ¢ (Table 3). These values were
selected to span the expected ranges for these variables, using the a priori values plus or minus approx-
imately 1 standard deviation. Given the values for the discrete exponential size distribution N (D)
associated with a particular regime, an assumed value for ¢ was used to construct an equivalent expo-
nential distribution based on the maximum dimension, D,,; [Wood et al., 2013]. Using this N(D,,) and
the regime’s radar reflectivity along with the assumed value for g, the corresponding value for & was
found via (9). Because particle masses are capped to be no larger than the masses of equal-diameter ice
spheres, a nonlinear least squares fitting routine was used to determine a. Next, taking the assumed value
for o, the corresponding value for y was found via (13), again using a nonlinear least squares technique
due to the dependence of snowfall rate on fall speed and due to the cap on particle area. Finally, syn-
thetic single-particle fall speed data sets were constructed using MHO5, with the abundance of particles of
different sizes determined by N (DM;i) and appropriate 2DVD sample volumes.

Synthetic cases are labeled by the regime, followed by a sequence of characters indicating the values of 4, o,
and ¢, in that order (e.g., following Table 3, “BPOm” indicates regime B, using the values f = 2.6, c = 1.785,
and ¢ = 0.725). Combination of the five regimes with the assumed values of 8, ¢, and ¢ provided a total
of 225 possible synthetic cases; however, 31 combinations did not result in usable cases. For these failed
cases, the causes of failure were either that a could not be made large enough to match the desired radar
reflectivity due to the cap on particle mass (6 cases), that y could not be made large enough to match the
desired snowfall rate due to the cap on particle area (21 cases), or that y could not be made small enough to
match the desired snowfall rate (4 cases).

Table 3. Values of State Variables Used to Generate

Synthetic States and the Textual Labels Used to 5. Forward Model and Uncertainties
\dentify Them? The relationships between microphysical properties
Variable Values and Labels and observations defined by (9) through (15), with

p “M":1.6, “m":1.9, “0":2.067, “p":2.3, “P":2.6 caps on mass and area as described previously, define
o “m":1.6, “0":1.785, “p"2.0 the forward model for the retrieval. Given some dis-
® “m”:0.725, “0":0.825, “p":0.925

crete size distribution, radar reflectivity is modeled
aLabels of “0” indicate values which are equal to using a discrete form of (9). Fall speeds are modeled

the a priori values used in the snow microphysics  for the discrete size distribution size bins using MHO5,

il and snowfall rates are computed via a discrete
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Figure 3. Retrieved values of coefficients and exponents for (top)
mass and (bottom) horizontally projected area power functions for
the 28 January snowfall event. Also shown for comparison are val-
ues from Mitchell [1996] for larger, aggregate-like particles. Values are
appropriate for cgs units.
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Figure 4. Information content metrics for the synthetic cases. For each
panel, the abscissa gives the values of g and ¢ for the synthetic case,
while the ordinate gives the regime and ¢ value, using the labels pro-
vided in Table 3. White regions of these panels show synthetic case
configurations which did not result in usable cases.

form of (13). Fall speeds are calculated
using MHO05 for each of the nominal sizes
for Vy, V;, and V,, then the differences
AV, and AV, are computed.

The forward model uncertainties are rep-
resented by the covariance matrix Sg.
The diagonal elements contain variances
for the forward modeled reflectivity,
snowfall rate, and fall speed terms. The
error covariances in the off-diagonal
positions occur between Ze and P
because of the common integration over
size distribution, and among P and the
fall speed terms because of the com-
mon dependence on the fall speed
forward model. These uncertainties arise
because of the discrete treatment of
integrals over size distribution (affect-
ing Ze and P), the use of approximate
scattering properties (affecting Ze), the
approximate treatment of fall speed
physics in the MHOS5 fall speed forward
model (affecting P, V,, AV;, and AV,),
and uncertainties in other forward model
influence parameters including observed
size distributions.

Uncertainties due to each of these
sources were evaluated with support
from SVI and 2DVD observations from
C3VP snow events. Further details are
provided in section B, where the subsec-
tions describe the independent sources
of uncertainty. Covariance matrices due
to each source were calculated then
summed to give S;.

6. Retrieval Performance

6.1. Application to C3VP Observations
of 28 January 2007

To illustrate the function of the retrieval,
results are shown for the lake effect snow
event illustrated earlier in Figure 1. This
event initially produced light snowfall
rates, but rates increased rapidly as a
heavy snow band lingered over Canada’s
Centre for Atmospheric Research Exper-
iments (CARE). Large snowflakes, near

10 mm in diameter, were observed dur-
ing the periods of heavy snow (R. T.
Austin et al., unpublished manuscript,
2007). The retrieved state variables are
similar to those reported by Mitchell
[1996] for larger, aggregate-like particles
(Figure 3). Retrieved values for ¢ were
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Table 4. Statistics of Fractional Errors in Percent and Information Content Metrics
From the Synthetic Cases?

Variable

or Metric A Priori Retrieval Retrieval HAP

a =71 (37.0) -5.4 (23.9) -1.6 (22.8)
p -0.85 (15.7) 1.0 (10.9) 0.72 (8.0)
y -4.5 (49.9) -4.7 (37.5) —4.1 (28.6)
o 0.10 9.1) 0.87 (8.9) 1.5 (9.4)
¢ 0.97 9.9 0.67 9.7) 0.3 9.9
H - 3.12 (0.16) 4.57 (0.26)
dg - 1.84 (0.034) 2.31 (0.032)

aMean, followed by standard deviation in parentheses.
bHigher-accuracy retrieval.

somewhat smaller than the a priori estimate of 0.825, ranging from 0.825 to about 0.75 for this case. Com-
plete results covering additional snow events and the retrieved PDFs for the state variables will be presented
in a subsequent paper.

6.2. Synthetic Test Results

The retrieval converged for all of the synthetic test cases and produced chi-square parameters that were
acceptable. The degrees of freedom for signal shows that only about two independent and significant
quantities are directly constrained by the observations, and, with H ~ 3 for most of the synthetic cases,
about eight distinct states might be discernible within the a priori state space (Figure 4 and Table 4). H
varies principally with the regime, with regimes consisting of lighter snow and lower reflectivity having
somewhat smaller values of H than those consisting of heavier snow and higher reflectivity. This behavior
may be because the heavier snow regimes have broader distributions which might help constrain the
exponents of the mass- and area-dimension relations. The averaged values of H for each regime show a
marked dependence on the size distribution slope (Figure 5). In contrast, d; varies only weakly over the set of
synthetic cases.

In addition to the information content metrics introduced in section 2, the retrieval may also be evaluated
by considering the errors in the retrieved state variables. The fractional error of a retrieved state variable X is
given by

a3) = E 1000 (18)
Il

for variables in linear units and

A (%) = (exp (X —x,) — 1) 100% (19)

— T ‘ : : for variables in logarithmic units, where x, is the
3'4f ] true value. The errors between the a priori state
3.3 . and the true states for these synthetic cases

(=)

I CEe give the errors that would result if the retrieval
- 3'27_ y ] did nothing. These errors form the baseline
i—é, 3.1 B B against which the retrieval performance can be
T 3; * 1 evaluated. To compute these errors for the a
I priori state, the values of X in (18) are taken to
2.9F f\ B be the a priori values shown in Table 1.
2.8F — For the baseline a priori errors, the regular pat-
0 05 1 15 2 25 3 terns exhibited by the fractional errors for g,
A, mm'1 o, and ¢ (Figures 6a, 7a, and 8a) are artifacts

of the method used to construct the synthetic

Figure 5. Regime-averaged Shannon information content H .
cases: the true values for these variables were

versus slope A of the regime size distribution for the synthetic )
cases. Each point is labeled with the name of the synthetic fixed as shown in Table 3. For @ and y, the true
regime per Table 2. values vary depending on the properties of the
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Figure 6. Fractional errors between the true and the (a, ) a priori or (b, d) retrieved mass state variables for synthetic cases. The axes of each panel are as
described for Figure 4. White regions show synthetic case configurations which did not results in usable cases.

regime and the values of the other state variables, causing the errors versus the a priori values to vary as
well. For « (Figure 6a), a priori errors for each regime vary primarily with . Errors are predominantly nega-
tive when g is larger than its a priori value and positive when f is smaller than its a priori value. This pattern
results from the correlation between In(a) and g induced by the radar reflectivity forward model and the
reflectivity observation.

The largest a priori fractional errors are associated with y, with errors exceeding +100% in some cases and
approaching —70% in others (Figure 7¢). The large-magnitude negative errors occur with synthetic cases
for which the true value of y is moderately large (0.5-0.7) compared to the a priori value of 0.211. Many of
these cases are for regime D, which combines high reflectivity with moderate snowfall rate. Presumably, y
has been made large for these cases in order to increase the particle area, reducing fall speeds to match
the moderate snowfall rate. These cases may not be represented well by the assumptions used in the for-
ward models. In particular, an examination of the subset of observations used to define regime D shows that
temperatures for 10 of the 14 members of the subset were in the range of 272 K to 273 K, while the other
four were in the range 264 K to 269 K. Those 10 members were observed between 1230 and 1500 UTC on 6
December 2006. Observers on the ground reported wet, sticky snowflakes during this period (R. T. Austin et
al., unpublished manuscript, 2007), while the forward model for radar backscattering is appropriate only for
dry snow.

Retrieval performance is summarized by the means and standard deviations of the fractional errors for the
a priori and retrieved states versus the synthetic true states (Table 4). Since the synthetic true states are dis-
tributed in a regular fashion about the a priori state, we expect the means of these errors (i.e., the biases) to
be near zero for both the a priori and the retrieval results, and they are. The remaining discussion of these
results focuses on changes in the standard deviations.

WOOD ET AL.

©2014. American Geophysical Union. All Rights Reserved. 8951



@AG U Journal of Geophysical Research: Atmospheres

10.1002/2013JD021303

Cases, Regime - ¢ pairs

A priori

[9)

Retrieved

20 20
15 15
[
10 10
5 o 5
0 0
-5 -5
-10 -10
-15 -15
MMMmMmMMmMMO 0 O ppPPP -20 mmm 0 0 PPP -20
mOpmOpPpmMOPMOpmOp mOpm o] mOp
A‘:}m || |
100 o 100
op | -
Om ||
50 B ¢ g 50
p -
Om =
] C 9o [ [ o
9
Om
-50 D %o -50
Op
-100 E ¢ -100
. | J -
MMMmmmOOOOPSPVPPPP MMMmmmOOOOPSPDPPPP
mOpmOpmOPpPpmMOpmOp mOpmOpmOPpPpmMOPpPpmOPp

g

Cases, pairs
o

Fractional Error, per cent

Figure 7. Fractional errors between the true and the (a, c) a priori or (b, d) retrieved area state variables for synthetic cases. The axes of each panel are as described
for Figure 4. White regions show synthetic case configurations which did not results in usable cases.

For the mass state variables, the retrieval generally improves upon the a priori. Evaluated over all the syn-
thetic cases, the standard deviation of the fractional errors for § decreases from 15.7% to 10.9% (Table 4).
The retrieval reduces errors in f for most of the synthetic cases (Figures 6b versus 6a), particularly those for
which the a priori error was large. The left side of Figure 6a shows strong positive errors, while these same
regions in Figure 6b show smaller positive errors. Similar comparisons can be made for the right side of

Figure 6a, where the a priori errors are strongly negative. Performance is similar for all regimes.
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Figure 8. Fractional errors between the true and the (a) a priori or (b) retrieved ¢ for synthetic cases. The axes of
each panel are as described for Figure 4. White regions show synthetic case configurations which did not results in

usable cases.
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w For a, the standard deviation of the
100~ ln(OLS N fractional errors decreases from 37.0%
50 B | t023.9%. Again, the retrieval reduces
L | errors for most of the synthetic cases
0 TR S S NI T S B L (Figures 6b versus 6¢). The exceptions
\ I I I I are for regime A (light snow) accom-
100~ 3 —1  panied by small values of ¢ and/or
i 1 small values of g and regime E (heavy
50 j ”_l_h i snow) accompanied by large values
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: i i i i i stantially from the a priori state, and
© 100~ In(y) = the ability of the retrieval to find solu-
= i ] tions far from the a priori is limited.
8 50 B | Asanexample, case EPpp has a true

0 ! | | ! | ! | ! | state with @ = 0.00279 and f = 2.6,

‘ i i i i i while the a priori has @ = 0.002078

100 [ o — and g = 2.067. Applying the true

state to the size distribution defined

50 - |  forregime E (Table 2) gives a reflec-
0 . | . | . | A | A | L tivity of 24.8 dBZe, while applying
: : : : : : the a priori state gives 27.2 dBZe.

100 () — Therefore, the retrieval must reduce

5 b the reflectivity by changing « and
50 — H—h_m N p from the a priori values; however,
T Y e instead of substantially increasing g,
0 0.2 0.4 0.6 0.8 1 the retrieval makes a modest increase
Value of A-matrix element to § = 2.14 and reduces a to 0.00167.
The retrieved state gives a reflectivity
of 24.5 dBZe, near the desired value.
In this case, the remaining constraints
from the synthetic snowfall rates and fall speed observations are not sufficient to steer the retrieval nearer
the true state.

Figure 9. Diagonals of A for synthetic cases.

The retrieval performance for the remaining state variables is mixed. Similar to the results for «, the stan-
dard deviation of the fractional errors for y decreases substantially, from 49.9% to 37.5%, and the retrieval
reduces the error for most of the synthetic cases (Figures 7c and 7d). The performance for ¢ and ¢ is
poorer. The retrieval leaves the standard deviations of their fractional errors almost unchanged. For o, the
results are mixed for different synthetic cases, with some having increased and some having decreased
errors (Figures 7a and 7b). For ¢, the changes in fractional errors between the a priori and retrieved states
(Figures 8a and 8b) are minor with the exception of regime D.

These results suggest that In(a), §, and In(y) are modestly constrained by the retrieval, while the measure-
ments provide little information regarding ¢ and ¢. To demonstrate this, the diagonal elements of A are
examined in Figure 9. Values for In(a) are near 1.0, indicating that its retrieved state is determined largely by
the observations. In contrast, values for ¢ are less than 0.1, indicating its retrieved state is determined largely
by the a priori. The values of the A diagonal elements for the remaining state variables fall between 0.1 and
0.5, indicating that the retrieved state for these variables is determined jointly by the observations and the a
priori estimate of the state.

6.3. Uncertainties and Observing System Design

The information content metrics provided by the microphysics retrieval provide a concise way to quan-

tify the influence of changes in the observing system on the retrieval performance. For the observations
themselves, significant uncertainties arise because of ground clutter in the VertiX radar profiles, the lack

of replicate observations of snowfall rate, and the relatively small sample volume of the SVI. Additionally,
uncertainties in the fall speed forward model were substantial, estimated at 30% of the observed fall speeds.
Using the synthetic test cases, an experiment was performed in which a series of improvements was applied
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Table 5. Changes in Information Content Metrics Due to these uncertainties and the information content

To Improvements in Observational and Forward Model metrics reevaluated to quantify the components of
Uncertainties the observing system that may offer the greatest
I araere potential for improving the retrieval performance.
Initial Ze P N(D)  Fall Speed Suppose, for example, that reflectivity observa-
H 312 367 367 3.68 457 tions could be made with reduced ground clutter
d, 184 190 191 191 231 contamination, allowing the observed reflectivity

to be nearer the surface observations of snowfall

rate, size distribution, and fall speeds. This insures
that the radar observation is representative of the surface in situ observations and allows the proximity
uncertainties described in section A1 to be omitted. Next, the uncertainties for the observed FD12P snow-
fall rates can be reduced to half their values, simulating the improvements that would result from having
four replicate snowfall rate observations. Third, we can assume more accurate size distributions, equivalent
to increasing the SVI sample volume by a factor of 6. This could be achieved by deploying additional instru-
ments, by enlarging the field of view or depth of field of the SVI camera, by increasing the sample times,
or by a combination of these changes. Finally, a more accurate fall speed model may be simulated, with
uncertainties reduced from 30% to 10% of observed fall speeds.

Results of these tests are shown in Table 5. Original values of H and d; are shown, along with the new values
resulting from incrementally applying the improvements. The improvements to the observations them-
selves led to negligible increases in d; but do introduce modest improvements in H. This result is consistent
with the interpretation of degrees of freedom for signal and information content. Reducing uncertainties

in existing measurements does not introduce new independent information but does allow the retrieval to
better resolve the retrieved state. Improvements to the fall speed forward model, however, produced sub-
stantial improvements in H and more significant improvements in d;. Not only is the retrieved state better
resolved, but the retrieval is utilizing more of the information available in the observations.

Changes in the retrieval fractional uncertainties are consistent with the improvements. When all improve-
ments are applied, including the key reduction in fall speed forward model uncertainties, the standard
deviation of the fractional uncertainties in y is reduced to 28.6% (Table 4) although changes in other stan-
dard deviations are negligible. Since the radar reflectivity partially constrains the mass parameters, the
improved fall speeds then provide improved constraints on A, and its parameters per (15).

7. Conclusions

The snow microphysics retrieval represents a novel approach to integrating independent observations of
Rayleigh-regime radar reflectivity, snowfall rate, particle fall speeds, and size distributions to extract snow
microphysical properties. Traditional processes for determining these properties can be onerous (e.g., mea-
suring diameters of melted drops to determine the mass of individual particles) or make less complete use
of the observations to look at limited aspects of the microphysical properties (e.g., 2DVD disdrometer esti-
mates of snow particle volume combined with precipitation accumulation to estimate snow particle bulk
density). The snow microphysics retrieval produces estimates of size-dependent particle mass and area
that give a consistent representation of Rayleigh scattering properties, fall speeds, and snowfall rate for a
population of particles. Additionally, these estimates are constructed as PDFs. These PDFs provide informa-
tion about the variability and uncertainties of these properties that are critical elements in satellite snowfall
retrievals [e.g., Liu, 2008; Kulie et al., 2010; Skofronick-Jackson et al., 2004].

The retrieval was tasked with determining five pieces of information (In(a) and g for mass, In(y) and ¢ for
area, and ¢) from five observations (Ze, P, V,,, AV;, and AV,). The information content metrics from synthetic
tests showed that, given the a priori information, only about two independent and significant pieces of
information were provided by the measurements. The measurements contributed principally to the deter-
mination of In(a), with less significant contributions to the determination of g and In(y). Relatively little
information was provided for ¢ and ¢. Nevertheless, the inclusion of ¢ was found to be essential for cor-
rect performance of the retrieval. For an observing system with these capabilities, the results highlight the
importance of traditional particle measurements. Such measurements could better constrain the a priori
distributions of these variables or, integrated into field campaigns like C3VP, could serve to independently
evaluate retrieval results.
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Information content metrics were used to characterize the benefits that might be achieved by improve-
ments to various aspects of the observations and the retrieval. While modest improvements in retrieval
performance were obtained by reducing ground clutter, improving snowfall rate accuracies, and increas-
ing SVI sample volume, the most significant improvements were achieved when the fall speed forward
model uncertainties were reduced. Targeted improvements to fall speed modeling, such as through the
use of particle imagery to adjust for particle geometry effects [e.g., Heymsfield and Westbrook, 2010], offer
significant potential for improving future observing systems. The sensitivity of the information content met-
rics to the uncertainties in the fall speed forward model suggests that expanding the number of fall speed
observations in the observation vector might also improve retrieval performance.

Appendix A: Analyses of C3VP Observations

C3VP [Hudak et al., 2006a], held in south-central Ontario during Northern Hemisphere winter 2006/2007,
established an enhanced surface measurement site at the Meteorological Service of Canada’s Centre for
Atmospheric Research Experiments (CARE) at Egbert, Ontario, approximately 80 km north of Toronto. Nearly
coincident observations of near-Rayleigh radar reflectivity, snowfall rate, size-resolved fall speeds, and

size distributions were available for four snow events which occurred on 6 and 7 December 2006, 28 Jan-
uary 2007, and 14 February 2007. Fall speed observations were available for three additional events which
occurred on 17, 20, and 22 January 2007. The events included both lake effect and synoptic front-driven
snowfall. Observations from these events were used to characterize synthetic snowfall regimes and to esti-
mate observational uncertainties for testing the retrieval. Reflectivity, snowfall rate, and fall speeds form the
retrieval’s observation vector and are discussed here. Size distributions are forward model parameters and
are discussed in section B.

A1. Radar Reflectivity

The McGill University Vertically Pointing X-band Doppler Radar (VertiX) [Fabry and Zawadzki, 1995] provided
vertical profiles of reflectivity at 9.35 GHz, a frequency at which scattering by snow particles is expected to
be near-Rayleigh, with 37.5 m vertical resolution and 10 s temporal resolution. VertiX observations were
calibrated via comparisons against coincident observations of snowfall over CARE from the MSC King City
C-band radar (WKR) [Hudak et al., 2006b]. While a hardware failure degraded VertiX performance early in
C3VP, the calibrated reflectivities after repair showed a standard error of 0.15 dB relative to WKR [Wood,
2011]. The calibrated VertiX reflectivities were averaged in linear units to 5 min temporal resolution to match
the SVI observations then converted to dBZe.

Due to ground clutter, the first 12 range bins were unusable during most snowfall conditions, causing a
vertical separation of 488 m between the reflectivity observations and the surface. This separation induces
a time delay between the appearance of a precipitation feature aloft and its appearance at the surface and
allows microphysical processes to change the snow properties and the reflectivity as the feature descends
from bin 13 to the surface.

Reflectivities at the surface were extrapolated from the reflectivities observed in bin 13 using an adjustment
as described by Wood [2011]. The adjustment involves correcting for time delays then evaluating the ver-
tical reflectivity gradient in the delay-corrected radar profiles. Uncertainties were estimated by applying a
similar adjustment between bins 25 and 13, then comparing the estimated and observed reflectivities for
bin 13. The standard deviation of the reflectivity errors ranged from 2.0 to 3.6 dB, and 2.5 dB was taken as a
typical uncertainty.

A2. Snowfall Rate

The principal observations of snowfall amounts at CARE were made by a manual Tretyakov gauge installed
within a vertical octagonal double fence, known as a double fence intercomparison reference (DFIR)
[Goodison et al., 1998]. Observations were recorded each day at 1300 and 2100 UTC. The DFIR was located
approximately 200 m from the main instrument cluster at CARE, where precipitation rate measurements
at T min resolution were made by a Vaisala FD12P [Vaisala, 2002]. For each snowfall event used, the FD12P
rates were scaled to match the DFIR accumulations calculated from 2100 UTC the day before the event to
1300 UTC the day after the event. The FD12P consistently underestimated accumulations relative to the
DFIR, with ratios (DFIR/FD12P) ranging from 1.15 to 1.98. The 1 min FD12P snowfall rates were averaged to
5 min resolution.
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Figure A1. Absolute differences in precipitation rates between the FD12P

and POSS instruments and binned mean differences used to estimate A3. Size-Resolved Fall Speeds
uncertainties in precipitation rates (heavy line). Precipitation rates are 5 Size-resolved fall speeds for the syn-
min averages. thetic cases are obtained by applying
the specified values of , 8, y, and

o to MHO5. The uncertainties in these synthetic fall speeds are estimated using actual observations from
Colorado State University’s 2-D Video Disdrometer [Thurai and Bringi, 2005]. The 2DVD captures particle
images from two vertically separated line scan cameras. Fall speeds can be calculated if the two images
produced by a particle can be matched. The data used here are from the improved matching algorithm of
Huang et al. [2010] for the four C3VP snowfall events supplemented with three additional events: 17, 20, and
22 January 2007. For each pair of matched images, the data provide the maximum particle width from each
of the two images along with the particle’s fall speed. The particle size D,pp , is taken as the larger of these
two maximum widths. In actual use, D,pp, , is converted to Dy, using a factor similar to ¢ for the SVI. Since
the factor varies weakly with particle shape for the 2DVD [Wood et al., 2013], a constant value is used, with
Dy = Dapyp v /0.95.

The 2DVD data for the seven events were composed into 5 min samples. For each sample, the particles
within each of the three designated size ranges (section 4) were filtered [Brandes et al., 2008], then the sam-
ple mean fall speed and its variance were calculated for each size range. The fall speed uncertainty for each
size range was taken to be the square root of the variance of the sample mean.

Assuming that the observational errors in the mean fall speeds for different size ranges are uncorrelated, the
required variances and covariances for the fall speed terms in the observation vector can be found as

s (avy) =57 (Vo) +55 (V1)

5y (AV) =57 (Vo) +57 (V2)
sy(VO,AV1)= (Vo) (A1)
Sy(VOsAV2)= (Vo)
s, (AV,,AV,) = 2(v0

where s2() and s(, ) represent variances and covariances, respectively.

Averaging over all 5 min samples gave values ofs§ (Vo) = 0.0429%, 55 (AV;) = 0.05332,and sﬁ (Av,) =
0.05222, with fall speed in ms™'.

Appendix B: Forward Model Uncertainties

B1. Discretization and Truncation

Wood et al. [2013] used 2DVD observations from C3VP to estimate errors due to discretization and trunca-
tion in X-band reflectivity calculated from discrete SVI size distributions. When power functions are used to
describe particle mass, the biases and uncertainties are largely dependent on the exponent of the power
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Figure B1. Rayleigh model errors relative to reflectivities calculated using

DDA scattering properties for observed SVI size distributions. Points show  \ith error covariances between the
the difference between Rayleigh modeled reflectivity and DDA-modeled
reflectivity for each size distribution observation. The fitted line shows a
linear estimate of the bias, while the error bars show the root-mean-square
error calculated from the residual differences after bias correction. Sg(Ze,P) = 0.35 (SF(Ze)) (SF(P)) .

(B3)

reflectivity and snowfall rate given by

B2. Uncertainties Due To Backscattering Properties

To evaluate uncertainties due to snow particle scattering properties, reflectivities calculated using the
Rayleigh approximation for ice spheres were compared against reflectivities calculated from scattering
properties obtained using the discrete dipole approximation (DDA) model DDSCAT (version 6.1) of Draine
and Flatau [1994] for a variety of particle shapes as described by Wood [2011]. DDA calculations were
performed for several distinct pristine habits and also for aggregate-like particles. Pristine habits were con-
structed using various mass, dimensional and density relations from prior observational studies [Auer and
Veal, 1970; Heymsfield, 1972; Mitchell, 1996]. The aggregate-like particle was a spatially branched shape.
This shape was used to construct several different examples of aggregates by using mass-dimension rela-
tions appropriate for aggregates [Locatelli and Hobbs, 1974] and using the “Aggregate hybrid approach” of
Heymsfield et al. [2002] to determine the horizontally projected area. The DDA scattering properties extend
to radiative size parameters x = 0.99 (based on particle maximum dimension D,,) or x = 0.096 (based on
the diameter of an equivolume ice sphere) where

D is a measure of particle size, and 4 is wavelength.

An ensemble of test cases was constructed using 978 SVI size distributions observed during C3VP snow
events. Reflectivities were calculated using both the Rayleigh sphere approximation and using the DDA
scattering properties assuming pristine shapes for small particles and aggregate shapes for large particles
[Wood, 2011]. The DDA reflectivities are generally larger than the Rayleigh model when reflectivities are
small and slightly smaller than the Rayleigh model when reflectivities are large (Figure B1). Averaged over
the ensemble of test cases, the bias of the Rayleigh sphere reflectivities relative to the DDA reflectivities
ranges from —1.5 dB at —5 dB to +1.0 dB at 35 dB. The root-mean-square values of the residual errors after
bias correction vary between 0.2 and 0.6 dB over the same range. Consolidating all the ensemble states, a
linear bias correction was determined to be

5:(Ze) = —0.049Zp, — 1.17, (B5)

where Zg,; is the reflectivity in dB modeled using Rayleigh spheres and the corresponding variance was
modeled as s?(Ze) = 0.42.
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1 B3. Fall Speeds

_
16 ! I Uncertainties due to approximations
in the forward model for fall speeds
14 'l o5 are difficult to assess, as there are
12 ) no higher-quality fall speed models
against which to compare. In their
g 10 study of previously reported lab-
E“ 8 1 0 oratory and in situ measurements
(o) 1 of ice particle fall speeds, Heymsfield
6 and Westbrook [2010] estimated
4 .05 theuncertainty of fall speeds calcu-
lated with their method to be less
2 F than 30%, developing their esti-
mate by binning single-particle fall

0= -1 i .
O 2 4 6 8 10 12 14 16 sp.egd errors by ?rea ratio and deter
mining the median fall speed error.

D, mm Mitchell and Heymsfield [2005] did
Figure B2. Fall speed forward model error correlations for MHO5, after not provide a similar estimate; how-
application of a 5 bin x 5 bin moving window average. ever, examining the scatter in the

Reynolds numbers of observed parti-

cles about their model (their Figure 2)
suggests that 30%-50% uncertainty is not unreasonable. Accordingly, an uncertainty of 30% was adopted
for modeled fall speeds.

The contribution to S; due to the fall speed forward model uncertainties is given by

Se, =K,S,K' (B6)

vy Ny
where K, is the Jacobian of the forward model with respect to the fall speeds and S, is the fall speed error
covariance matrix. The first row of K,, 0Ze/dv, is uniformly zero since Ze has no dependence on the fall
speeds. The second row, dP/av, follows the numerical treatment used to integrate (13), and with trapezoidal
integration becomes

oP 1 ADyo
N g N (Dyo) m (Diyo) ) (B7)
N(DM;1) m (DM;1) ADyy -+
ADM;K

N (Duc) m (D) —— | »

where K is the number of discrete bins in the size distribution and AD,,; are the widths of the size bins. In
the third row, 0V}, /dv has a value of one at the size bin at which V,, is defined (i.e., at D;; = 4 mm) and is zero
elsewhere. The fourth and fifth rows are obtained similarly as d (V, — V) /dv and o (V, — V,) /ov.

The estimate of forward model fall speed uncertainties given above requires covariances of the fall speed
model errors as a function of particle size, S,. Lacking a higher-quality forward model, estimates of S, were
obtained by performing simple fits of the MHO5 fall speed forward model to the observed 2DVD fall speeds,
then evaluating correlations between the fitting errors. The fall speeds from 5 min samples from the seven
events were binned into the same size distribution bins used by the SVI, then filtered [Brandes et al., 2008]
before means and standard errors were calculated. The fall speed forward model was then fitted to the
mean fall speeds using a nonlinear least squares technique, and fitting errors were found for each size bin.
Paired errors (error for size bin i paired with error for size bin j) were collected for each sample over all sam-
ples, then correlations between errors were calculated, forming a fall speed error correlation matrix p,. A

5 bin x 5 bin moving window average was applied to smooth the variations (Figure B2). From the error
correlation matrix, the values of the elements of the error covariance matrix S, are

2 v) = pyli. jifvy;, (B8)

where f is the fractional error for the fall speeds, taken to be 30% as noted above, with v; and v; the fall
speeds for size bin i and bin j.
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Table B1. Influence Parameter Dependencies B4. Uncertainties Due to Influence Parameters
of the Forward Model Components Influence parameters that must be assumed in the forward
model include not only the density of ice and the dielec-

Component Parameters i i R i

5 tric properties of ice and water, which are reasonably well
Ze D;, ND)), ||Ki]| . ) N
. D, N T p. 6. Co. o b determined, but also the discrete values of the size distri
. - ’p’a’ . OC’, Ot; "0 pution N(D,,,), the associated sizes D,, and environmental

0 » > 90, %-0-40> Y0 . .0 R

AV, T.p. 8. Co» do. b properties like temperature and pressure. S, is found as
AV, T.p, 8o, Co, do, by

S = K,S,K], (B9)

where K, is the Jacobian of the forward model with respect

to the influence parameters and S,, is the influence param-
eter uncertainty covariance matrix. Since K, varies with the estimated state variables, S; is evaluated as the
retrieval iterates.

Parameter dependencies shared by the forward model components will result in covariances between errors
in the forward modeled observation vector variables. Table B1 summarizes the parameter dependencies of
the forward model components. Dependencies on T and p, atmospheric temperature and pressure, arise
through the dependence of fall speeds on atmospheric density and viscosity. Although ||K,||2 exhibits a
dependence on temperature which would cause Ze to also be dependent on temperature, this dependence
is weak over the expected atmospheric temperature range and is ignored.

B4.1. Size Distribution Uncertainties

The Snow Video Imager (SVI) [Newman et al., 2009] uses a video camera to capture 2-D images of particles
that fall within the 3-D volume defined by the camera’s 2-D field of view and the depth of field. For C3VP,
the SVI camera was mounted pointing horizontally, giving elevation views of the snow particles. The SVI size
distributions were reported in discrete size bins of width 0.25 mm using the feret diameter, Dqy, , for sizes
ranging from 0 to 26 mm at 1 min resolution. To improve the sample volume and reduce uncertainties while
maintaining reasonable time resolution, the SVI observations were composited into distinct 5 min samples.

Observational errors in the size distributions arise from a number of sources related to both the analysis of
the particle images and to the probabilistic nature of the observations. A method to evaluate these analytic
and sampling uncertainties was described by Wood et al. [2013] and is the method used in this work. Briefly,
analytic uncertainty sources include errors in counting the particles in an image, uncertainties in measured
particle size, and uncertainties in the sample volume calculated for each particle. These uncertainties are
propagated into uncertainties in the SVI size bins and size distribution values. Sampling uncertainties arise
due to statistical fluctuations in the number of particles counted by the instrument. The particle count

for a particular size bin is treated as a Poisson random deviate, and the particle sizes are treated as ran-
dom deviates distributed per a PDF defined by the observed size distribution. Note that while the particle
dimension Dqy, ; observed by the SVI will, for almost all typical particles, underestimate the true maximum
dimension Dy, of the particle [Wood et al., 2013], the adjustments to the size distribution to convert N(Dsy ¢)
to N(D,,), and uncertainties in those adjustments are handled separately in the retrieval process via the
state variable ¢.

B4.2. Variances for Other Parameters

The remaining influence parameters for which variances are required are ||K,||2 T, p. 8y, Cy, dg, and b,. The
value of ||K,||2 used in this work was taken to be 0.177, a value appropriate for 9.35 GHz at 250 K from the
compilation of Warren [1984]. The contributions of uncertainties in ||K,||2 to uncertainties in the forward
modeled reflectivity were neglected as they are likely small compared to uncertainties due to the forward
model formulation and to observational uncertainties.

All other parameters affect the calculation of fall speeds. T and p are used to calculate air viscosity, 6, and
C, describe hydrodynamic properties of particles, and a, and b, are empirical constants used to improve
the agreement between the MHO5 model and observed fall speeds for aggregate particles [Mitchell and
Heymsfield, 2005]. The uncertainties in fall speeds due to uncertainties in a, and b, were assumed to be
subsumed in the uncertainty estimates for the fall speed forward models, so uncertainties in a, and b,
were ignored. Uncertainties in 6, and C, were obtained by comparing the values found by Heymsfield and
Westbrook [2010] against the values used by Mitchell and Heymsfield [2005]. The respective values of &,
were 8.0 and 5.83, and those for C, were 0.35 and 0.6. The differences (2.17 and 0.25) were used as the
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estimated uncertainties and were assumed to be uncorrelated. Reasonable uncertainties for T and p are
likely to have minimal effects on air viscosity, and nominal uncertainties were taken to be 0.5°C and 1 kPa.
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