
A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE
Product and the CloudSat Cloud Profiling Radar

MARK SMALLEY AND TRISTAN L’ECUYER

University of Wisconsin—Madison, Madison, Wisconsin

MATTHEW LEBSOCK

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

JOHN HAYNES

Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

(Manuscript received 20 March 2013, in final form 27 August 2013)

ABSTRACT

Because of its extensive quality control procedures and uniform space–time grid, the NCEP Stage IV

merged Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and surface rain gauge dataset is

often considered to be the best long-term gridded dataset of precipitation observations covering the

contiguous United States. Stage IV accumulations are employed in a variety of applications, and while

the WSR-88D systems are well suited for observing heavy rain events that are likely to affect flooding,

limitations in surface radar and gauge measurements can result in missed precipitation, especially near

topography and in the western United States. This paper compares hourly Stage IV observations of

precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud Profiling Radar,

which provides excellent sensitivity to light and frozen precipitation. Statistics from 4 yr of comparisons

show that the CloudSat observes precipitation considerably more frequently than the Stage IV dataset,

especially in northern states where frozen precipitation is prevalent in the cold season. The skill of

Stage IV for precipitation detection is found to decline rapidly when the near-surface air temperature falls

below 08C. As a result, agreement between Stage IV and CloudSat tends to be best in the southeast, where

radar coverage is good and moderate-to-heavy liquid precipitation dominates. Stage IV and CloudSat

precipitation detection characteristics are documented for each of the individual river forecast centers that

contribute to the Stage IV dataset to provide guidance regarding potential sampling biases that may impact

hydrologic applications.

1. Introduction

The inherent variability in precipitation over the con-

tiguousUnited States (CONUS) is responsible for flooding

and droughts, drives fluctuations in freshwater supplies,

and has significant implications for the nation’s agricultural

output. The benefits of accurate precipitation monitoring

and prediction are clear, and long-term, high-resolution

precipitation datasets are critical to the hydrology and

climate communities.

The National Centers for Environmental Prediction

(NCEP) Stage IV consists of hourly precipitation accu-

mulations on a ;4.7-km polar stereographic grid across

the CONUS beginning in 2001 (Lin and Mitchell 2005).

The production process utilizes a combination of the

national Weather Surveillance Radar-1988 Doppler

(WSR-88D) network of ground radars and surface

gauges. The NCEPStage IV accumulations are computed

as a national mosaic of the multisensor precipitation es-

timator (MPE), which is a fusion of the digital precipi-

tation arrays (DPAs) from the National Weather Service

(NWS) Precipitation Processing System (PPS; originally

at polar 18 3 1km resolution) with available surface

gauges at each of the 12 CONUS River Forecast Centers

(RFCs; Fulton et al. 1998; Lin and Mitchell 2005). The
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MPE (and therefore the Stage IV) benefits both from

surface gauge input and manual and automatic quality

controls at each individual RFCbefore being interpolated

to the Hydrologic Rainfall Analysis Project (HRAP) grid

to become the NCEP Stage IV (Fulton 2005). This

product is widely considered to be the best gridded rain

accumulation dataset over the CONUS and is frequently

employed as the benchmark, or truth, when evaluating

other remotely sensed precipitation products (Wu et al.

2012; Gourley et al. 2010; Tesfagiorgis et al. 2011; Lin and

Hou 2012). The Stage IV hasmany applications, including

forecast verification (e.g., Yuan et al. 2005, 2007), valida-

tion of downscaling models (Tao and Barros 2010), and

has been used as an input to the Eta–Eta Data As-

similation System (EDAS; Lin and Mitchell 2005)

precipitation assimilation routine, to name a few.

Several studies have attempted to assess the perfor-

mance the Stage IV accumulations with surface rain

gauge networks and other ground radar products. For

example, Habib et al. (2009) found that comparisons

with independent surface gauges are good when mea-

sured over long time periods, but they also identified

large differences for individual rain events. Habib et al.

(2013) found that, when comparing different realizations

of theMPE (e.g., with and without gauges andmean-field

and local bias corrections from surface gauges), the best

match to measurements from an independent surface

gauge network was the product that was quality con-

trolled by RFC forecasters and chosen to represent the

best estimate of the rain field in hydrologic applications

like Stage IV. The quality controlled quantitative pre-

cipitation estimation (QPE) showed a high probability of

detection, a low probability of false detection, and rela-

tively low standard deviations of random error at all

rainfall thresholds used in the study, reflecting the value

of human input to the Stage IV. These two studies were

performed near the Gulf of Mexico in Louisiana, so ef-

fects of frozen precipitation were not considered.

Westcott et al. (2008) found that daily and monthly Stage

IV accumulations were generally within 25% of those

from independent surface gauges. However, the general

scarcity of surface gauges caused these and other pre-

ceding Stage IV comparisons to include only a few vali-

dation points in each Stage IV grid box that cannot

represent the subgrid variability that often characterizes

precipitation across the United States.

Comparisons with other radar products (Westcott et al.

2008; Gourley et al. 2010) have shown that Stage IV

outperforms radar-only products and radar-gauge prod-

ucts with no manual quality control. These studies, how-

ever, cannot assess issues of beam blockage and beam

overshoot since all datasets use the same radars and

therefore give the reader an optimistic view of the

performance of Stage IV. These issues, which are illus-

trated in Maddox et al. (2002, their Fig. 5a) and in Cao

et al. (2013), result in large gaps in coverage below 2km

above ground level, especially in the mountains and

western regions, where precipitation is often forced by

orographic lifting. WSR-88D radars may also un-

derestimate some lake effect precipitation events be-

cause of beam overshoot (Nicosia et al. 1999). The

effective ranges of WSR-88D radars are also affected

by the height of the freezing level, which determines

the location of the brightband and changes with region,

season, and synoptic conditions. Stage IV grid points

that fall outside the effective range of all radars due to

any of these effects are either interpolated from nearby

MPE points or are filled with Geostationary Opera-

tional Environmental Satellite (GOES) infrared bright-

ness temperature rain rate estimates as part of themanual

quality control at individual RFCs (Fulton 2005). While

this interpolation undoubtedly helps to fill gaps in radar-

only datasets, the quality of the rainfall estimates in in-

terpolated regions is difficult to assess using conventional

ground-based instrumentation.

Frozen precipitation also poses difficulties to radar-

and gauge-derived liquid-equivalent precipitation rates.

The NWS PPS assumes the existence of spherical hy-

drometeors and does not distinguish between liquid and

frozen hydrometeor types (Fulton et al. 1998). This as-

sumption in the dynamic Z–R relationships causes bia-

ses when dealing with frozen precipitation or when the

radar beam crosses above the freezing layer in any

season (Zhang et al. 2008; Zhang and Qi 2010). Addi-

tionally, the effective range of the WSR-88D radar is

reduced when winter conditions lower the freezing level

or create temperature inversions (Fulton 2005). This

causes an increased dependence on surface gauges,

which have their own difficulties with blowing snow and

spatial coverage. Many of these difficulties are reviewed

by Michaelides et al. (2009). These effects are more

likely to impact the western CONUS, as the WSR-88D

network is much denser in the eastern CONUS.

In summary, many studies have shown that Stage IV

outperforms other radar-only, gauge-only, and satellite

retrievals, but the absolute performance of the Stage IV

dataset for characterizing the frequency of occurrence

of precipitation remains an open question. While many

applications using Stage IV data often focus on moderate-

to-heavy rainfall events, there are several hydrologic,

agricultural, air quality, and transportation applications

that also require precipitation occurrence to be accu-

rately prescribed. This study compares precipitation fre-

quency from themultisensor Stage IV across theCONUS

to those from the polar orbitingCloudSatCloud Profiling

Radar (CPR; Stephens et al. 2008). The objective is to
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characterize the strengths and weaknesses of each of

these ground-based and satellite platforms for detect-

ing precipitation and to attribute discrepancies to the

characteristics of each observing system in different

environments. While each dataset is found to miss some

precipitation, the results suggest that the 230dBZ sen-

sitivity of the W-band CPR (Tanelli et al. 2008), the

strong attenuation signature of precipitation at this

wavelength, and the relatively uniform 750-m height of

reflectivities used in theCloudSat precipitation detection

algorithm (Haynes et al. 2009) make it an excellent ref-

erence for identifying rainfall and snowfall.

2. Data

a. Stage IV

Hourly NCEP Stage IV (Lin and Mitchell 2005) pre-

cipitation accumulations from the years 2007 to 2010

were obtained from the Stage IVQPEdistributionwebsite

(http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/).

As noted earlier, the Stage IV QPE product utilizes

manual and automatic quality controls within each of the

individual RFCs and benefits from a high-resolution

4.7-km grid, but it is still susceptible to unavoidable

uncertainties from beam blockage, beam overshoot, re-

duced sensitivity at long ranges, and scarcity of surface

gauges. For the purposes of this study, the Stage IV data

are converted to a binary discrimination of precipitation

or no-precipitation based on the presence of nonzero

rain accumulations in each Stage IV grid box in the given

hour. All reported Stage IV accumulations greater than

zero are set to one, designating a precipitating retrieval.

Precipitation estimates over the oceans, Canada, and

Mexico are omitted from this study, as the goal is to

examine the precipitation detection characteristics of

Stage IV over regions relevant for hydrologic applica-

tions over the CONUS. Figure 1 shows the definitions of

the RFC basins and the coverage of the precipitation

accumulations examined here. Note that the state of

Washington and surrounding area is not represented in

the 1-h Stage IV data product.

b. CloudSat rainfall detection product

The 94-GHz CPR flies aboard the polar-orbiting

CloudSat satellite in NASA’s A-Train constellation.

CloudSat observes a single along-track nadir reflectivity

curtain with a spatial resolution of about 1.4 km 3
1.8 km and a minimum detection signal of 230 dBZ.

CloudSat launched in 2006 and provides a multiyear

record with 5–6 overpasses of the CONUS each day at

close to 0130 and 1330 local time (LT). Its observations

have recently been used to provide new global rainfall

and snowfall datasets (L’Ecuyer and Stephens 2002;

Haynes et al. 2009; Lebsock and L’Ecuyer 2011). Com-

parisons against satellite-based passive microwave and

Ku-band radar precipitation observations emphasize

the enhanced sensitivity of CloudSat to light precipita-

tion (Berg et al. 2010; Behrangi et al. 2012).

This study focuses on the CloudSat precipitation oc-

currence dataset, 2C-PRECIP-COLUMN (release 04)

initially described in Haynes et al. (2009). The original

algorithm applies thresholds to attenuation and multiple-

scattering-corrected, near-surface reflectivities and an

estimate of path-integrated attenuation derived from

the surface backscatter cross section to assess the like-

lihood of precipitation falling in the atmospheric layer

between 750 and 1000m over open ocean surfaces.

Preliminary comparisons of rainfall frequency in the

2C-PRECIP-COLUMN dataset against selected rain

gauges from diverse locations around the globe are en-

couraging (Ellis et al. 2009). However, the original da-

taset did not consider land or sea ice surfaces. The open

ocean algorithm uses the path-integrated attenuation

(PIA) as an input. It must bemodified over land surfaces

because there are currently no reliable estimates of PIA

over these surfaces.

The method to extend the determination of surface

precipitation occurrence over land and ice surfaces to

the 2C-PRECIP-COLUMN product is described here.

This method follows a relatively simple decision tree that

employs temperature-dependent reflectivity thresholds.

To begin, a phase determination of rain,mixed, or snow is

FIG. 1. Stage IV precipitation accumulation coverage for the

Northwest (NW), California–Nevada (CN), Colorado Basin (CB),

Missouri Basin (MB), Arkansas–Red Basin (AB), West Gulf

(WG), North Central (NC), Lower Mississippi (LM), Ohio (OH),

Northeast (NE), Middle Atlantic (MA), and Southeast (SE) RFC

basins. Study coverage is limited to the CONUS.
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made using the maximum tropospheric temperature

(Tmax) in theCloudSat observation profile provided in the

European Center for Medium-RangeWeather Forecasts

(ECMWF) analysis. If Tmax . 275K then the phase is

set to rain, if Tmax , 273K then the phase is set to snow,

and between these thresholds the phase is determined as

mixed. The mixed phase determination should be in-

terpreted conservatively as an uncertain categorization.

Following phase determination, the precipitation occur-

rence is determined using the reflectivity profile of the

lowest discernible cloud layer, which is defined as the

lowest layer where the value of the CloudSat geometric

profile product (2B-GEOPROF) cloud mask (Marchand

et al. 2008) is greater than 30. A complication of pre-

cipitation determination from the 94-GHz spaceborne

radar is the attenuation of the radar beam, which can

substantially diminish the reflectivity signal near the

surface, therefore requiring a methodology slightly more

sophisticated than using a threshold on the near-surface

reflectivity. The occurrence algorithm is distilled to four

variables: the reflectivity in the fifth radar bin above the

surface (;1200m; Z5), the cloud layer maximum reflec-

tivity (Zmax), the cloud layer cloud base height (Hbase),

and the surface radar cross section (s0). In the case of

rain, a classification of ‘‘certain’’ requires either thatZ5.
5dBZ or that there is evidence of heavy attenuation in

the variables Zmax, Hbase, and s0. For mixed phase, the

certain classification reflectivity threshold is Z5 .
22.5 dBZ, with an additional check for attenuation given

that significant amounts of liquid water aremost certainly

present for these scenarios. For snow, the certain classi-

fication is determined using the threshold Z5 . 25 dBZ

with no additional checks on attenuation because the

attenuation by ice at 94GHZ is generally small and

tends to be compensated by multiple-scattering effects

(Matrosov and Battaglia 2009). The reflectivity thresh-

olds applied here to land and ice surfaces represent

adjustments to the quantitative thresholds provided in

Haynes et al. (2009), corresponding to precipitation rates

of 0.03mmh21. Upward threshold adjustments are nec-

essary over solid surfaces because the precipitation

detection algorithm is applied in the fifth above-surface

bin (;1200m) instead of the third bin (;750m) above

the surface in order to avoid contamination of the at-

mospheric signal with the surface return. The adjusted

precipitation thresholds were determined through a com-

bination of quantitative comparisons of 1 yr of coincident

overpasses of CloudSat and the C-band weather radar lo-

cated at King City, Ontario, Canada, which are described

in Hudak et al. (2008), and qualitative visual inspection of

CloudSat observations.

In the analysis that follows, the Precip_flag pre-

cipitation diagnostic from 2C-PRECIP-COLUMN is

considered in the context of rainfall occurrence esti-

mates from the Stage IV dataset. Only fields of view

(FOVs) labeled as rain certain, snow certain, or mixed

certain are considered in this study.

c. Spatial scaling

The fractional occurrence of precipitation is a strong

function of the spatial scale over which precipitation is

identified (Berg et al. 2010; Stephens et al. 2010). To

account for the different spatial resolutions of Stage IV

and CloudSat, binary precipitation detection retrievals

from CloudSat are smoothed over 5 FOVs and any re-

sulting FOVs with smoothed values greater than 0 are

set to 1 to approximate the resolution of the Stage IV

QPEs. With a CloudSat nominal FOV separation of

;1.1 km, this reduces theCloudSat resolution to;5 km,

which is much closer to the nominal Stage IV resolution

of ;4.7 km. The resulting scaled CloudSat retrievals

therefore represent the maximum precipitation fraction

over each overlapping 5-km along-track segment as

opposed to detecting precipitation based on mean re-

flectivities over the segment. However, this more closely

resembles Stage IV rainfall occurrence that effectively

combines rainfall information contained in constituent

azimuthal 18 km 3 1 km polar grid boxes into the final

4.7-km gridded product (Fulton et al. 1998). The effects

of scaling the CloudSat data are investigated in the ap-

pendix, where it is shown that while the scaling does

increase the number of detections made by CloudSat, it

does not significantly affect the conclusions of the study.

d. Collocation

Stage IV retrievals are collocated with overpassing

CloudSat retrievals by a nearest-neighbor method.

There are a total of 8196 overpasses during the years

2007–10, yielding 2 988 257 collocated observations

where both CloudSat and Stage IV produce a valid re-

trieval. In the record, 154 198 (5.2%) collocated Stage

IV FOVs contain precipitation and 271 759 (9.1%)

scaled and collocated CloudSat FOVs contain precip-

itation. Although the collocation process requires that

the centers of any two collocated FOVs be within 3 km

of each other, there are unavoidable uncertainties

stemming from the fact that the Stage IV measures

precipitation rates for the duration of 1 h, while the

CloudSat scan of each FOV is very brief, about 0.16 s. It

is expected that collocation alone will cause precipita-

tion to bemeasured by one dataset but not the other. For

example, in a given collocated pair, it is possible for

a cloud to stop precipitating before the CloudSat over-

pass or for the CloudSat overpass to occur before the

onset of precipitation during that Stage IVmeasurement

hour. This can happen anywhere, but it may be more
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prevalent in areas of spotty convection or fast-moving

systems. The reverse is not possible because CloudSat

measurements are effectively instantaneous in compar-

ison to Stage IV 1-h accumulation periods. Therefore,

this effect will serve to increase the Stage IV detection

rate in comparison to CloudSat.

Figure 2 presents four example overpasses with loca-

tions of collocated Stage IV and CloudSat precipitation

flags with CloudSat reflectivities shown as a reference.

These examples show how detection differences can

arise from both physical and collocation-based means.

For reference, corresponding CloudSat footprints are

outlined in black on the map, showing WSR-88D loca-

tions with 120-km range rings. While 120 km is well

within the 230-km range of the WSR-88D radars, it was

chosen to resemble the spacing of Fig. 5a in Maddox

et al. (2002), which shows ranges at 2 km above ground

level. From overpass A in Fig. 2, it can be inferred that

the precipitating environment changed at some point

during the Stage IV hour of accumulation, and the brief

FIG. 2. Map of WSR-88D locations (red dots) with 120-km range rings (blue circles). Black

lines indicate respective locations of selected CloudSat reflectivity curtains depicted below the

map where locations ofCloudSat and Stage IV precipitation detections are shown as green and

red dots, respectively. The reflectivity curtains shown as orbits (top to bottom) A, B, C, and D

were taken from the 1 Jul 2008 orbit 11577, 1 Feb 2008 orbit 09385, 11Oct 2009 orbit 18384, and

2 Jul 2008 orbit 11598 CloudSat 2B-GEOPROF files, respectively.
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CloudSat overpass witnessed only a snapshot of the

precipitation pattern. The rain system may have had an

east–west propagation that brought the 44.78 and 46.38
precipitation events out of the path of CloudSat, or

precipitation could have ended before or started after

the CloudSat overpass. Another possible explanation of

the offset is a heavier reliance on gauge interpolation in

this area because of the long distance to the nearest

radar. Stage IV andCloudSat could also be making their

retrievals at different heights in the atmosphere, which

could make comparisons sensitive to high winds and

potentially to evaporation. Offsets like these are not

necessarily errors in either precipitation retrieval, but

they contribute unavoidably to differences in statistics

between the two datasets. Orbit section B in Fig. 2 shows

how the Stage IV may miss precipitation over moun-

tains, where beam blockage and spatial coverage often

limit ground radar detection capabilities. Overpass C in

Fig. 2 shows a case where precipitation is strong enough

to totally attenuate the CloudSat radar at 318, but Stage
IV does not report precipitation in an area of seemingly

good radar coverage. The fourth example D shows snow

falling over western Missouri in a high-shear environ-

ment. Detection differences may also arise when Stage

IV accumulations result fromWSR-88D systems sensing

the upper portion of precipitation, but then high winds

blow snow into a nearby Stage IV grid box, at which time

CloudSat samples a lower portion of the precipitating

atmosphere and therefore senses the precipitation at

a different location. This phenomenon is expected to

affect the Stage IV and CloudSat retrievals equally and

should therefore not significantly alter relative detec-

tions made by the two products.

3. Results

a. Regional detection characteristics

The collocation of Stage IV with CloudSat allows for

comparisons at the individual pixel level, as opposed to

comparing distributions of aggregated samples. To be

included in the analysis, both CloudSat and Stage IV

must each produce a valid retrieval for a collocated pair

of observations. This encourages the use of a 2 3 2

contingency table to summarize the four possible com-

binations of the binary datasets. In Table 1, the variable

a refers to the number of times that both Stage IV and

CloudSat report precipitation in a collocated pair of

observations. Variables b and c represent the number of

times Stage IV reports precipitation but CloudSat does

not and the number of times CloudSat reports precip-

itation but Stage IV does not, respectively. Variable

d represents the number of times neither Stage IV nor

CloudSat report precipitation. Throughout the remainder

of this study, contingency table variables a, b, and c are

referred to as Both, Stage IV Only, and CloudSat Only,

respectively, to clarify their underlying meanings.

Figure 3a shows the overall percentages of FOVs

found to be precipitating by the Stage IV and CloudSat

for each basin for all collocated observations in 2007–10.

CloudSat reports higher values of occurrence in all ba-

sins. Since this study is focused on differences between

the two products, Fig. 3b shows relative precipitating

detections for matched observations, where Stage IV

Only, CloudSat Only, and Both as defined above. For

example, the total precipitation percentage sensed by

the CloudSat in the Ohio (OH) basin is represented

by the sum of the Both and CloudSatOnly values in this

basin, which is shown in Fig. 3a as about 12%. CloudSat

clearly reports precipitation more frequently than Stage

IV across all RFC basins, with retrievals being simi-

lar only in the Arkansas–Red Basin (AB), West Gulf

(WG), Lower Mississippi (LM), and Southeast (SE)

regions. These basins reside in the south central and

southeastern United States, where precipitation gener-

ally falls as rain and rarely as snow or sleet. On the other

hand, large discrepancies can be seen in the California–

Nevada (CN), Northwest (NW), and other basins. As

will be shown, this is most likely due to the presence of

light or frozen precipitation, which occurs frequently in

the northern states. Differences in detection based ex-

clusively on unavoidable collocation offsets (e.g., Fig. 2)

are most directly represented in the Stage IV Only

values in Fig. 3b. Since CloudSat is so sensitive to pre-

cipitation, the nonzero values of Stage IV Only are

likely a result of a combination of advection offsets near

edges of precipitation systems or whereCloudSatmakes

its near-instantaneous measurement before or after the

precipitation occurs (e.g., Fig. 2, orbit A) within the

Stage IV hourly accumulation period. The influence of

these effects is a strong function of the true precipitation

fraction, its type, and the degree of organization of in-

dividual precipitation events in each basin. Differences

between the total CloudSat and Stage IV precipitation

TABLE 1. A 23 2 contingency table where Stage IV does or does

not observe precipitation and where CloudSat does or does not

observe precipitation. Here a, b, and c are equal to relative pre-

cipitation detections as Both, Stage IV Only, and CloudSat Only,

respectively. The value of d (no precipitation detected by either

retrieval) typically takes a value much greater than the others be-

cause of the rarity of precipitation in our atmosphere.

CloudSat yes CloudSat no

Stage IV yes a b

Stage IV no c d
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fractions in Fig. 3a include contributions from these

collocation offsets as well as differences in precipitation

detection ability. Since the spatial collocation offsets are

small and random (not shown) and temporal sampling

effects favor increasing Stage IV Only, these differences

represent a conservative estimate of the fraction of

precipitation occurrences that goes undetected in each

RFC basin.

It is important to note that the requirement of collo-

cated samples restricts the analysis to when CloudSat is

ascending or descending over the CONUS, at approxi-

mately 0130 and 1330 LT due to its sun-synchronous

polar orbit. Thus, the statistics presented here represent

only a subset of the events contributing to precipitation

patterns across the CONUS, allowing the study to

highlight differences in the precipitation detection ca-

pabilities of Stage IV and CloudSat. The study cannot,

for example, quantify the effects of the diurnal cycle on

total precipitation probability in any given area. Despite

this restriction, Fig. 3a illustrates that some basins ex-

hibit well-understood patterns of precipitation, despite

the restriction of time of the CloudSat time of overpass.

This includes high precipitation frequency detected by

CloudSat in the NW and Northeast (NE) basins and low

precipitation frequency in the WG and AB basins, to

name a few. Furthermore, it will be shown below that

these comparisons provide valuable insights into the

causes of precipitation detection biases that can be at-

tributed to well-understood characteristics of ground-

based S-band radars.

The frequencies of precipitation detected byCloudSat

and Stage IV for all 48 months at 38 3 38 resolution are

presented in Fig. 4 (left). With the exception of the

southern states, values of Stage IV Only precipitation

are very small here, ranging from 1.5% to 2%, while

values of CloudSat Only and Both vary with precipita-

tion type, organization, and frequency. Low values of

Stage IV Only and Both are apparent in the northwest

despite high values of CloudSat Only in the same area,

owing to the frequent shallow, light precipitation falling

in northern California andOregon. The highest values of

Both tend to occur in the northeastern CONUS, where

precipitation tends to be more persistent in the winter

than in the summer (Kursinski and Mullen 2008). If

other factors are identical, a more organized pre-

cipitation system such as slow moving or frontal pre-

cipitation will produce better agreement between Stage

IV and CloudSat than scattered, fast-moving, or small-

scale precipitation because there are fewer spatial and

temporal offsets in collocation. That, coupled with

relatively good radar coverage (Maddox et al. 2002),

could create a better environment for Stage IV to

detect precipitation.

Significant amounts of CloudSat Only precipitation

are also evident in the Great Lakes and Intermountain

West regions in Fig. 4, providing a hint that snowfall may

also play a role in detection differences between the two

sensors. To examine this more closely, the middle and

right columns of Fig. 4 show the comparisons for which

the 2-m air temperature T . 108C and T , 08C, re-
spectively, as determined by the collocated ECMWF-

AUX product (Partain 2007). Grid boxes containing

greater than 25% CloudSat standard error (STE) are

omitted. Standard errors are computed using Eq. (1),

whereNp andNt are the effective degrees of freedom for

precipitating and total FOVs, respectively:

FIG. 3. (a) The overall percentage of collocated FOVs found to

be precipitating as reported by Stage IV andCloudSat during 2007–

10. (b) Percentages of relative detections for where Stage IV ob-

serves precipitation but CloudSat does not (Stage IV Only), for

where CloudSat observes precipitation but Stage IV does not

(CloudSat Only), and for where both Stage IV and CloudSat ob-

serve precipitation (Both) for collocated FOVs in each RFC basin

over the CONUS. The x axes in each panel have been sorted to

show increasing CloudSat Only for viewing purposes.

450 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



STE5 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Np

1 1=Nt

r
. (1)

Effective degrees of freedom Np and Nt are calculated

using the method of Eq. (3) in L’Ecuyer et al. (2009).

Areas with high standard error are indicative of regions

with insufficient numbers of samples and/or precipitat-

ing retrievals in the corresponding temperature range

and are omitted fromdisplay. This is particularly evident

in the far west for warm conditions and in the south for

cold conditions.

Retrievals from the CloudSat are used for deter-

mining the standard error for data filtering because the

CloudSat precipitation detection is more sensitive to

hydrometeors than the Stage IV precipitation detection.

Detection differences are far greater when T , 08C,
where CloudSat observes much more precipitation than

Stage IV across all presented areas. This supports the idea

that the greater sensitivity of the CPR allows CloudSat

to more readily detect frozen precipitation than Stage IV

and may have important implications for applications

seeking to constrain snowfall frequency or accumulations,

including those seeking to model changes in snowpack

or spring runoff. Stage IV and CloudSat exhibit better

agreement for warm environment retrievals in Fig. 4

(middle), owing to the exclusive presence of liquid pre-

cipitation, which is more easily observed by the Stage IV.

CloudSat still observes a greater amount of precipitation,

likely because of reduced sensitivity and increased beam

height at ranges far from radars in the Stage IVdataset, but

discrepancies are much larger during the colder seasons.

b. Temperature dependence

To further assess the effect of near-surface air tem-

perature, observations were sorted into 58C bins based

on collocated ECMWF 2-m air temperature for the

entire CONUS. Figure 5 shows the resulting histogram

of detection differences during all 48 months, along with

the associated standard errors. Since the two retrievals

have been collocated and therefore have exactly the

FIG. 4. Relative statistics for 48months of collocated Stage IV andCloudSat precipitation detections. (left) Data from all temperatures;,

(middle),(right) only data for which the 2-m near-surface air temperatures from ECMWF are .08C and ,08C, respectively. Grid boxes

are omitted if the corresponding CloudSat standard errors are found to be .25%, as computed by Eq. (1).
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same number of samples, differences in standard errors

between CloudSat and Stage IV at a particular tem-

perature range are a direct result of the differences in

the number of precipitating scenes reported by each

product. CloudSat observes more precipitation than

Stage IV in all temperature ranges, so estimates of its

standard errors are consequently lower. It is clear from

Fig. 5 that values of CloudSat Only increase dramati-

cally while values of Stage IV Only decrease when near-

surface air temperatures are around2108 to 08C. Hobbs

et al. (1974) show that the ice aggregation process ex-

periences a maximum when temperatures are between

2108 and 08C (Hobbs et al. 1974), which is consistent

with the location of the CloudSat maximum in Fig. 5.

From the addition of the CloudSat Only and Both data,

Fig. 5 is also consistent with the fact that precipitation

over the CONUS is less frequent at extreme tempera-

tures. Kursinski and Mullen (2008) find that precip-

itation tends to bemost commonwhen temperatures are

close to freezing because of the increased organization

and lifetime of winter precipitation. The decrease in

retrieved precipitation percentages in each Stage IV

and CloudSat at very cold temperatures parallels a de-

creased affinity for existence of snow aggregates (Hobbs

et al. 1974), which have larger cross sections that are

more likely to be sensed by radar. The resulting lack of

precipitation at extreme temperatures raises the stan-

dard error beyond the threshold chosen for this study.

Figure 6 illustrates the temperature-dependent de-

tection characteristics of Stage IV and CloudSat in each

FIG. 5. Temperature dependence of relative precipitation de-

tections between Stage IV and CloudSat. Standard errors are

included as dashed lines using the y axis at the right. The large

increase in CloudSat Only at and below 08C is indicative of frozen

precipitation likely unobserved by Stage IV but observed by

CloudSat because of its high sensitivity to low reflectivities. Again,

data are omitted where the CloudSat standard error is .25%.

FIG. 6. As in Fig. 5, but separated for each RFC basin. Results are omitted if the corresponding CloudSat standard error is .25%.

STECloudSat and STEStage IV represent the mean of the CloudSat and Stage IV standard errors for displayed data in each basin.
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individual RFC basin. The results are generally consis-

tent with knowledge of the meteorology of the respec-

tive regions. For example, the Missouri (MB), Colorado

(CB), North Central (NC), and NE basins receive rela-

tively large amounts of annual snowfall, and their

respective subplots all indicate large discrepancies be-

tween the CloudSat and Stage IV precipitation fractions

when near-surface air temperatures are close to or be-

low freezing. Conversely, precipitation detections are in

much closer agreement in southeastern basins, namely,

the AB, LM, SE, and WG basins, which are character-

ized by convective precipitation with high rain rates that

are easily observed by both CloudSat and Stage IV (Lin

and Hou 2012). The NW and CN basins exhibit large

differences in detection across all 2-m air temperature

ranges. This is likely due to a combination of sparse

radar coverage (Maddox et al. 2002), the prevalence of

light but persistent stratiform precipitation along the

west coast of the United States in the NW and CN ba-

sins, and frequent snowfall in the mountains and inland

portions of the NW basin. In contrast to CloudSatOnly,

the values of Stage IV Only decrease with decreasing

temperatures below 08C from already lesser values in all

basins for which data are displayed.

c. Quantifying detection differences

To further quantify differences in the precipitation

detection characteristics of CloudSat and Stage IV, skill

scores are computed for each region and temperature

range. Because of the high sensitivity of the CPR to all

types of precipitation, it is reasonable to useCloudSat as

a reference observation and consider the Stage IV as the

‘‘model’’ or ‘‘forecast’’ of precipitation, although it should

be emphasized that the CloudSat dataset does not repre-

sent an absolute truth. This allows the bias, Peirce skill

score (PSS), and odds ratio skill score (ORSS, also known

as Yule’sQ) to be used to estimate the proficiency of the

Stage IV precipitation detection relative to CloudSat in

a manner analogous to testing binary forecasts of pre-

cipitation occurrence using a forecast/observation con-

tingency table shown inTable 1. Equation (2) summarizes

the definitions of the different scores and how they relate

to the contingency variables a, b, c, and d in Table 1:

bias5
a1 b

a1 c

PSS5
ab2bc

(a1 c)(b1 d)
5H2F

ORSS5
(ad/bc)2 1

(ad/bc)1 1
5

ad2 bc

ad1 bc
. (2)

The bias (Wilks 2011) is the ratio of predicted positive

outcomes to observed positive outcomes of a binary

forecast. It can take values from 0 (no predicted positive

outcomes) to 1 (even number of predicted positive

outcomes and observed positive outcomes) to infinity

(no positive observed outcomes). The bias is used to

assess whether Stage IV or CloudSat reports more oc-

currences of precipitation. The PSS (Peirce 1884) takes

the value of 1 for perfect forecasts (hit rate H 5 1 and

false alarm rate F5 0), 0 for unbiased random forecasts

(H 5 F) and constant forecasts, and 21 for perfectly

incorrect forecasts. The PSS has the advantage of giving

greater weight to correct forecasts of rare events, which

is the case with precipitation. Similarly, the ORSS (Yule

1900) takes values of 1 for perfect forecasts, 0 for ran-

dom forecasts, and 21 for perfectly incorrect forecasts.

A drawback of using the ORSS is that it results in

a perfect forecast if either b or c is 0, which could simply

be a result of low sample sizes. However, this weakness

is mitigated by the inclusion of an estimate of uncertainty,

which indicates if a low number of samples in any one

value in Table 1 might adversely affect the robustness of

the ORSS estimate. As shown by Stephenson (2000), the

PSS, ORSS, and bias can be used to fully describe the

three degrees of freedom in a 23 2 contingency table, as

long as uncertainties are respected for the PSS andORSS.

Confidence intervals of 95% are computed using Eq. (3),

where uncertainty estimates for the PSS and ORSS are

taken from Wilks (2011, his Eq. 8.83) and Bishop et al.

(1975, their Eq. 11.2–11), respectively:

CIPSS561:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

r 2 4(ar 1 cr)(br 1 dr)PSS
2

4Nr(ar 1 cr)(br 1 dr)

s

CIORSS561:96(12ORSS2)
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ar
1

1

br
1

1

cr
1

1

dr

s
. (3)

In Eq. (3), the subscript r indicates that the value has

been multiplied by the ratio of the reduced degrees of

freedom to the number of observations pairs (Nt/N)

used to calculate each value of PSS and ORSS. This is

done to account for high autocorrelation found in both

datasets, which violates the assumption of independent

draws of observations that fill the contingency table.

Figure 7 shows changes in the PSS, ORSS, and bias

with collocated ECMWF 2-m air temperature in each

RFC. Several general distinctive characteristics are im-

mediately visible in Fig. 7. First, the bias is rarely near

1 and almost never greater than 1, confirming that

CloudSat detects more frequent precipitation than Stage

IV at all temperature ranges in all basins except in the

AB between 108 and 158C and the LM between 158 and
208C, where the bias is just above 1. The analogous plots
in Fig. 6 show that values of Stage IVOnly andCloudSat
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Only are each around 2.5% at these temperatures while

the value of Both is about twice as high, indicating great

agreement between CloudSat and Stage IV in these

conditions. Precipitation at these temperatures and lo-

cations is certainly rain, which is ideal for the WSR-88D

radar retrievals. Basins having near-surface air temper-

atures below zero consistently exhibit low PSS and bias,

consistent with the decreased ability of Stage IV to

measure snow and mixed precipitation. This further

emphasizes the difficulty that theWSR-88D radars have

in detecting frozen precipitation but helps to place this

effect in more quantitative terms. According to the un-

certainty analysis, this study is not able to say with 95%

confidence that Stage IV has nonzero skill in the NW at

any temperature. This is another indication of the

complex terrain in the area and lack of radar sites and

sensitivity that are necessary to retrieve the light rain

and frozen precipitation that characterizes the NW.

It is interesting to note that the ORSS does not appear

to exhibit the decreasing trend at cold temperatures,

while the PSS does. Equation (2) shows that the ORSS

puts an equal emphasis on correct positive forecasts

(precipitation) and correct negative forecasts (no pre-

cipitation). In this case, the values of the ORSS are

skewed toward unity by the nature of precipitation being

a relatively rare event in comparison to lack of pre-

cipitation. The ORSS is therefore dominated by non-

precipitating scenes and demonstrates that the sensors

tend to agree that these occur far more frequently than

precipitation in all regions and temperature ranges. This

illustrates the importance of reporting more than one

skill score, as simple presentation of the ORSS alone

would convey an unrealistically high skill of Stage IV in

detecting precipitation. In contrast, the PSS places

greater emphasis on the correct positive forecasts and

marginal totals of the contingency table and conse-

quently takes lower values in all basins in Fig. 7.

4. Discussion

Many applications of the Stage IV data focus on the

amount of accumulated precipitation, rather than the

frequency of precipitation. Because the fourth release of

the 2C-PRECIP-COLUMN dataset used here does not

FIG. 7. Estimates of theORSS, PSS, and bias for comparisons of detection statistics, as computed fromEq. (2) for the various basins. The

95% confidence intervals are estimated from Eq. (2). Scores are omitted from the figure if the corresponding CloudSat standard error is

.25%.
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include estimates of precipitation rates, it is not cur-

rently possible to use the CloudSat to rigorously quan-

tify the accumulation that may result from precipitation

that is not detected by Stage IV. However, it is possible

to provide a ballpark estimate based on an approximate

estimate of the sensitivity of the WSR-88D rain rate re-

trievals. Unmeasured accumulations can then be esti-

mated from using the number of missed collocated

precipitating FOVs by applying standard Z–R and Z–S

relationships (Battan 1973, his Tables 7-1 and 7-3). As

before, only occurrences of rain certain, mixed certain,

and snow certain are included in the calculation.

CloudSat identifies a pixel as containing precipitation

if its near-surface reflectivity is greater than about 0 dBZ

(section 2b). Conversely, a typical threshold assumed for

discriminating rain in WSR-88D QPE algorithms is

15 dBZ (Hartzell et al. 2001). In the absence of total

beam blockage or overshoot, then, these limits provide

useful estimates for the range of reflectivities that the

CPR would report as precipitating but the Stage IV

would not. To assess the magnitude of unmeasured ac-

cumulations in each RFC, individual precipitation rates

at 0 and 15 dBZ were computed using all Z–R and Z–S

relationships found in Battan (1973, his Tables 7-1 and

7-3). The resulting liquid-equivalent precipitation rates

were averaged and multiplied by the number of un-

observed rainy and snowy FOVs as reported by the

scaled CloudSat 2C-PRECIP-COLUMN dataset.

Figure 8 shows both observed Stage IV accumulations

for collocated FOVs and the corresponding estimates of

unobserved accumulation. Clearly Stage IV captures the

majority of precipitation in all basins, but in some cases

a significant fraction of the total accumulation may be

missing from the Stage IV record, as shown in the inset.

For example, about 17% and 22% of water volume may

be absent from the CB and NW, respectively. This value

would likely move to even higher percentages if data

from the Washington State area were included in the

hourly Stage IV product (Westrick et al. 1999). Consis-

tent with precipitation occurrences, basins in the south

and southeastern United States tend to miss less precip-

itation volume than their northern counterparts. Even so,

this rough calculation suggests that ;5% of precipitation

volume may be missed in any RFC. When coupled with

biases in precipitation frequency, such estimates could

have implications for modeling changes in soil moisture,

estimating turbulent heat fluxes, and assessing regional

climate variability. It may also be important to account

for such effects when using Stage IV to evaluate other

rainfall accumulation products such as those fromTropical

Rainfall Measuring Mission (TRMM) and Global Pre-

cipitation Measurement (GPM; Lin and Hou 2012).

Again, it should be emphasized that the results in

Fig. 8 provide only ballpark estimates of the precip-

itation missed by Stage IV and its relative contribution

in each RFC. True accumulations in any given basin are

not possible without quantitative intensity retrievals

for each CloudSat FOV and will even then be limited

by the sun-synchronous orbit of CloudSat. It is worth

noting that the next release of the CloudSat rain rate

algorithm will provide rate estimates of rain and snow

over land regions that should provide a more direct

measure of the volume of precipitation missing from

the Stage IV and other records.

FIG. 8. Stage IV measured accumulations (water equivalent) for collocated FOVs by basin

with estimates of unobserved accumulations of rain, mixed plus snow (labeled snow), and the

total of the two. The inset figure shows the estimated amount of unobserved accumulations by

Stage IV in each basin as a percentage of the total plus unobserved accumulations.
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5. Conclusions

This study shows that, because of a combination of

limited radar density, beam blockage and overshoot,

and limited sensitivity to frozen precipitation, the

Stage IV hourly precipitation accumulation product

may underrepresent precipitation occurrences across

the contiguous United States, including as much as

78% of precipitation occurrences in the Northwest

basin. While the undetected precipitation events may

often be composed of light or frozen precipitation that

do not generally result in flooding events, these pre-

cipitation types, especially snowfall, can be frequent

enough to contribute significantly to local water bud-

gets, affect soil moisture, and influence the strength of

local turbulent heat and moisture fluxes. Undetected

snowfall also affects snowmelt runoff in the spring

season, which is important for water resources and

flood mitigation. The following conclusions can be

drawn from this analysis.

1) Regions with dense radar coverage and typically

heavy or large-scale precipitation events exhibit the

best agreement between Stage IV and CloudSat.

This generally includes areas from the south-central

to eastern portions of the United States.

2) A maximum of missed precipitation occurs in the

northwestern United States, corresponding to cli-

matologically light rain along the coast, snowfall

inland, and sparse regional radar coverage and beam

blockage.

3) A secondary maximum of missed precipitation oc-

curs in the northeastern United States, correspond-

ing to regional cold season snowfall.

4) The majority of undetected precipitation events

occur when near-surface air temperatures fall below

08C. This trait is common to all RFC basins having

substantial cold season precipitation.

5) Skill score analysis shows that Stage IV systematically

observes fewer precipitation events than CloudSat,

and the performance of Stage IV when compared to

CloudSat decreases when near-surface air tempera-

tures drop below 08C.
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APPENDIX

Effects of Spatial Resolution

As noted in section 2c, precipitation occurrences from

CloudSat at;1.5-km resolution were scaled up to more

closely match the ;4.7-km spatial resolution of Stage

IV. Because of the binary nature of the CloudSat 2C-

PRECIP-COLUMN product, this can only serve to

increase the rate of detections by CloudSat. To dem-

onstrate that these effects are not responsible for the

differences in detection characteristics between Cloud-

Sat and Stage IV, the effects of spatial scaling on the

results are illustrated in Fig. A1. Precipitation occur-

rence over the entire CONUS is determined from

matched observations at the nominal CloudSat resolu-

tion, an average of three CloudSat FOVs, and the av-

erage of five CloudSat FOVs chosen in this study as

providing the best match to the Stage IV grid. Recall

that in each case an averaged FOV is found to be pre-

cipitating if any of the constituent FOVs is found to be

precipitating. As expected, scaling the CloudSat data

clearly increases fractions of CloudSat Only, but it also

slightly decreases values of Stage IV Only while in-

creasing values of Both by a small amount at all tem-

peratures. In this way, scaled CloudSat retrievals gain

precipitation detections that the nominal resolution re-

trievals miss when the CloudSat measurements may

have taken place just before of after precipitation oc-

currence in the Stage IV grid box. This is likely at the

FIG. A1. Effect of scaling the CloudSat precipitation flag as

a function of temperature. The thin, medium, and thick lines rep-

resent results when using the nominal CloudSat resolution, three

CloudSat FOVs, and five CloudSat FOVs (used in this study) to

scale the CloudSat precipitation detections to approximate the

resolution of the Stage IV QPEs. Scaling the CloudSat data does

not affect the general trends in detection differences.

456 JOURNAL OF HYDROMETEOROLOGY VOLUME 15

http://www.cloudsat.cira.colostate.edu
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/


edge of a precipitating system and effectively shifts

Stage IV Only precipitation into the Both category. On

the other hand, increases in CloudSat Only are likely

due to precipitation occurrences that are missed by

Stage IV, causing it to increase somewhat proportionally

in all temperature ranges. It is seen that, although the

scaling does increase the value of CloudSat Only in re-

lation to Stage IV Only and Both, the effect is small

compared to the overall magnitude of precipitation oc-

currences missed by Stage IV and does not affect the

systematic pattern with temperature in the results.

Therefore, even though this scaling is appropriate since

the Stage IV dataset is generated from polar 18 km 3
1 km rain rates within the NWS PPS, it is encouraging to

see that the results are not strongly influenced by this

averaging.
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