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[1] Methods are presented for assessing minimum errors
and cloud inhomogeneity effects in cloud liquid water path
(LWP) products derived from passive microwave satellite
measurements. Using coincident visible/infrared satellite
data, errors are isolated by identifying certain cloud
conditions within the microwave sensor’s field of view.
Analysis of 3 weeks of global pixel-level LWP data
revealed that 70% of the systematic errors occurred
between —0.011 and +0.025 kgm 2, with the mean
random error being 0.013 kgm™ “. For overcast clouds
these systematic errors translate to a mean lower-bound
relative error of about +23%. A significant correlation of
these products with near-surface wind speed was also
shown. The LWP products were found to depend on cloud
fraction as well, suggesting the influence of beam filling
errors. This approach shows promise in characterizing the
minimum errors in LWP products needed for climate and
remote sensing studies as well as future data assimilation
applications. Citation: Greenwald, T. J., T. S. L’Ecuyer, and
S. A. Christopher (2007), Evaluating specific error characteristics
of microwave-derived cloud liquid water products, Geophys. Res.
Lett., 34, 122807, doi:10.1029/2007GL031180.

1. Introduction

[2] Measurements from passive microwave sensors on
satellites have provided over two decades of continuous
cloud liquid water path (LWP) (liquid water content inte-
grated vertically through the atmospheric column) products
over the oceans. These datasets are the longest running and
most complete observations of cloud microphysical proper-
ties available and are unique also in that they are free of the
effects of most ice particles, are derived independently of
droplet size information (unlike optical methods), and are
available day or night.

[3] Despite the use of these products in a broad range of
studies, from climate model validation to cloud-radiation
interaction [e.g., Stephens and Greenwald, 1991; Zuidema
and Hartmann, 1995; Chen and Roeckner, 1997; Borg and
Bennartz, 2007; Ming et al., 2007], little is known regarding
their error characteristics. Direct comparisons against in situ
and surface-based microwave observations have yielded
promising results for limited cases [Greenwald et al.,
1993; Cober et al., 1996; Prigent et al., 1997; Offiler et
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al., 1998]; however, aircraft measurements have sample size
and representativeness issues, as well as being relatively
rare and costly; whereas observations from surface-based
microwave radiometers can exhibit significant systematic
errors [Turner et al., 2007].

[4] Knowledge of LWP errors is especially relevant to
studies of cloud properties and radiation. For example,
cloud LWP uncertainties constitute one of the largest error
sources in simulating the Earth’s radiation budget [L Ecuyer
and Stephens, 2003]. The sensitivity of top-of-atmosphere
(TOA) and surface radiative fluxes to LWP is highest for
thin water clouds (LWP < 0.05 kgm %), thus placing an
unusually high demand on LWP accuracy [Sengupta et al.,
2003; Turner et al., 2007]. In satellite remote sensing of
cloud droplet number concentration, LWP uncertainties are
one of the dominant retrieval errors [Bennartz, 2007]. Not
only are LWP error estimates needed for climate studies and
remote sensing, but also for defining satellite instrument
requirements for measuring global climate change [Ohring
et al., 2005].

[s] This study proposes an independent way of interpret-
ing and quantifying certain error characteristics of cloud
LWP products globally using concurrent data from visible/
infrared satellite sensors. The approach draws mainly from
studies that examined LWP data in cloud-cleared scenes
[e.g., Liu and Curry, 1993; Lin and Rossow, 1994; Jung et
al., 1998] but it also examines both overcast and inhomo-
geneous cloud situations. Other potentially significant error
sources not considered in this study include cloud emission
temperature uncertainties [Greenwald et al., 1993] and
possible undetected rain contamination [Wentz and Spencer,
1998].

[6] This work improves upon and extends earlier studies
by 1) utilizing better collocation, 2) investigating sub-field-
of-view (FOV) cloud effects, 3) distinguishing between
systematic and random errors, and 4) showing how cloud-
cleared errors impact the cloudy-sky LWP products. De-
tailed collocation techniques are essential since extracting
maximum error information requires accurate determination
of cloud conditions within the microwave sensor’s FOV.

2. Satellite Data

[7] The sources of satellite data are the Advanced Mi-
crowave Scanning Radiometer-E (AMSR-E) and the MOD-
erate resolution Imaging Spectroradiometer (MODIS) on
the Aqua platform. As part of NASA’s A-train, Aqua resides
in a low earth orbit with equatorial crossing times of about
1:30 AM and 1:30 PM local time. This study uses Level 2
(i.e., swath or pixel-level) data products for the period 1-—
21 July 2002. The duration of the study period was largely
dictated by the enormous data volume and computational
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Figure 1. Error distributions for instantaneous cloud-
cleared AMSR cloud liquid water path products for July
1-21 2002. N is number of data points, NH is Northern
Hemisphere and SH is Southern Hemisphere. Bin size is
0.005 kgm 2.

resources required to perform pixel-level matches of the two
datasets.

[s] AMSR-E is a conical-scanning passive microwave
instrument with twelve dual-polarization channels at 6.9,
10.7, 18.7, 23.8, 36.5, and 89 GHz. The Version 1 AMSR-E
ocean products include near-surface wind speed, LWP, sea
surface temperature (SST), rainfall rate, and total precipita-
ble water (TPW). These products are retrieved from all
channels except 89 GHz [Wentz and Meissner, 2000]. The
LWP products have an effective spatial resolution of 14 x
8 km. To greatly reduce the effect of precipitation on the
analyses, the LWP data were filtered using the rainfall
product quality flags. While use of these flags will not
eliminate all rain events, they will remove events having the
greatest impact.

[v] MODIS is a cross-track-scanning imager with 36
channels ranging from 0.4 to 14.5 um. The Collection 4
cloud products, which are at 1 km resolution, were used.
Products relevant to this study include cloud mask data,
visible optical depth, effective particle radius, identification
of cloud phase, and infrared (channel 31, 11 pum) window
brightness temperatures. Platnick et al. [2003] discusses the
retrieval algorithms used in generating these cloud products.

[10] Also used for comparison is cloud LWP inferred
from visible optical depth (7) and effective radius (7,)
products. For an adiabatically stratified cloud [e.g., Borg
and Bennartz, 2007] the cloud LWP is obtained as

5
LWP = §rg7'pw

where p,, is the density of liquid water.

3. Approach

[11] The method of collocation is the most important
aspect of combining pixel-level microwave-derived LWP
products and visible/infrared imager data. Since cloud
detection is more reliable with multi-spectral data, colloca-
tions are limited to local daytime scenes. Our approach is to
first search for the MODIS pixel nearest to the center of a
given AMSR-E FOV. All MODIS pixels that fall within the
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AMSR-E’s elliptically shaped footprint are then identified
taking care to precisely account for the different viewing
geometries of each instrument.

[12] For each collocation a number of MODIS products
are saved. Quantities related to temperature include the
11-pm brightness temperature (average, cloud only average,
and minimum) and average cloud top temperature. Cloud
properties include average visible optical depth, effective
radius, and water path. All quantities are averaged over the
AMSR-E FOV assuming a 2-D Gaussian shaped antenna
function with the maximum at the center of the FOV. Other
important quantities saved include the cloud fraction and
number of liquid, ice, and mixed phase clouds within each
FOV.

[13] Key to isolating errors in the cloud LWP products is
restricting the analyses to certain cloud conditions. The first
are cloud-cleared scenes, where the variability and biases in
the LWP products are a direct measure of the uncertainty in
non-cloud related properties, such as atmospheric absorp-
tion (both oxygen and water vapor), and sea surface
emissivity and temperature. These uncertainties establish
lower bounds on the LWP product errors. The retrieved
cloud LWP for a given cloud-cleared FOV defines the
systematic error since the true LWP should be exactly or
very nearly zero. Random errors, on the other hand, are
computed as the spatial standard deviation of cloud-cleared
LWP products for small regions (0.5° x 0.5°) at a given
time.

[14] For cloudy scenes, the special case of overcast
conditions within the FOV is considered. Overcast situa-
tions are relatively homogeneous and for liquid only clouds
allow for direct comparisons with optically derived cloud
LWP [e.g., Lin and Rossow, 1994; Greenwald et al., 1997;
Horvath and Davies, 2007; Borg and Bennartz, 2007.]
Owing to visible optical depths being typically two orders
of magnitude greater than microwave optical depths, optical
methods are far more sensitive to changes in very small
LWP. However these methods are subject to the plane-
parallel bias (i.e., due to unresolved small-scale variability
[Cahalan et al., 1994]) and are more prone to 3D effects,
though in locally overcast conditions 3D effects are some-
what reduced. Uncertainties due to vertical cloud inhomo-
geneities and aerosol contamination are generally second
order influences on optical methods.

[15] Finally, examining cloud LWP products in broken
cloud scenes can yield insight into the effect of inhomoge-
neous clouds on microwave sensors [Miletta and Katsaros,
1995; Greenwald et al., 1997]. Because the spatial resolu-
tion of these sensors is too coarse to resolve individual
cloud elements, the mixture of cloudy and clear sky con-
ditions within the FOV can lead to what is often called
“beam-filling error”, a bias that reduces the observed
brightness temperature and, hence, underestimates the re-
trieved cloud LWP [Bremen et al., 2002].

4. Results
4.1. Cloud Cleared and Overcast

[16] Figure 1 shows that systematic errors for cloud-
cleared LWP data are normally distributed but slightly offset

from zero. This offset may suggest a small calibration error
in the AMSR 37 GHz brightness temperature data. The
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Figure 2. Distributions of instantaneous cloud-cleared
(solid) and nonprecipitating overcast (dashed) AMSR-E
cloud liquid water path products stratified into different
(a) wind speed, (b) sea surface temperature and (c) total
precipitable water categories. Bin size for both cloud-
cleared and overcast data is 0.01 kgm 2.

mean error is +0.0070 kgm 2 and 70% of the errors lie

between —0.011 and +0.025 kgm 2. The errors also exhibit
hemispheric differences of +0.012 kgm 2 for the north and
+0.0036 kgm* for the south.

[17] Random errors, on the other hand, behave much like
a gamma distribution and have a mean error of 0.013 kgm >
and a mode of 0.010 kgm_z. The time-mean geographic
distribution of random errors (not shown) resembles the
mean distribution of cloud-cleared TPW (i.e., errors gener-
ally increase with TPW); a result not unexpected since
water vapor has a major impact on the cloud LWP products.

[18] To better understand the nature of these systematic
errors, the cloud-cleared LWP distributions were binned
according to different broad ranges of AMSR-derived wind
speed, SST, and TPW. This technique has been used by
Wentz and Meissner [2000] to identify false correlations
among different microwave-derived products. Ideally, one
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would prefer errors to be independent of these other
quantities.

[19] Figure 2 reveals that the cloud-cleared LWP data are
relatively independent of SST, but there is a strong system-
atic dependence on wind speed and a somewhat less distinct
trend with TPW. Since the northern hemisphere during
summer typically has larger TPW and lower wind speeds
than the southern and because errors are negatively corre-
lated with wind speed and generally positively correlated
with TPW, this may explain the hemispheric differences
seen in Figure 1.

[20] But are these same dependencies reflected in the
LWP products under cloudy conditions? Applying the same
analysis to LWP data for overcast clouds, but limited to a
minimum 11-gm Ty, of >255 K within the FOV, shows the
same dependence on wind speed (see Figure 2). This
correspondence is linearly correlated at 0.98 when consid-
ering the mean values of the cloud-cleared and overcast
distributions. The dependence of overcast LWP data on
TPW is less clear but there is a separation in the distribu-
tions between the lowest and highest TPW categories in
terms of both the mean and the mode values.

[21] The relative impact of these errors on overcast LWP
data cannot be evaluated on an instantaneous basis. How-
ever, this impact can be estimated in a time-space mean
sense by averaging the cloud-cleared and overcast LWP
data used in Figure 2 separately over the 3-week period on
1° x 1° grids. For example, the relative systematic error in
overcast LWP at a grid point is obtained by dividing the
average cloud-cleared LWP by the average overcast LWP.
The mean relative systematic error for overcast LWP was
found to be +23% with 70% of the values lying between
—8.2% and +54%. Applying a similar analysis using the
cloud-cleared random errors yielded a mean relative random
error in the overcast LWP of 42%. The significantly larger
relative random error is due to the tendency of these errors
to be largest in widespread areas where the overcast LWP is
smallest.

[22] Comparison of AMSR-E and MODIS LWP data for
AMSR-E FOVs with warm (i.e., 11-um T, > 273 K)
overcast clouds is also revealing (Figure 3). While the mean
values are nearly identical (0.0511 versus 0.0515 kgm?)
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Figure 3. Distributions of nonprecipitating warm overcast
liquid water path derived from instantaneous AMSR-E and
MODIS data. N is number of data points. Bin size is
0.005 kgm 2.
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the shapes of the distributions are quite different. The
distinctly broader AMSR-E LWP distribution is likely
caused by both the wind speed/TPW dependencies de-
scribed earlier and the reduced sensitivity of 37 GHz
measurements to small LWP. However, possible biases in
the MODIS LWP data cannot be ruled out as a cause of
some of these differences.

4.2. Non-Overcast Cloudy Scenes

[23] To investigate the effect of scattered clouds on the
AMSR-E LWP products, the analysis was limited to warm
clouds. This was done to more directly relate cloud amount
within the FOV to mean cloud LWP since the presence of
ice or mixed-phase clouds will bias the cloud amount.

[24] Results in Figure 4 indicate a trend of decreasing
cloud LWP with decreasing cloud amount (see also Table 1),
similar to the findings of Greenwald et al. [1997]. This
systematic reduction in cloud LWP may be due mainly to
the beam-filling effect, though it is uncertain how other
factors might influence this relationship, such as the possi-
bility that the LWP of individual cloud elements may
decrease as the cloud field becomes more broken.

[25] Not only does a strong correlation exist between
cloud LWP and cloud amount, the results also suggest a
difference between the LWP of scattered clouds with those
of locally (~10 km scale) overcast clouds. Even assuming
that LWP differences for nonovercast clouds are due
entirely to beam-filling errors and then scaling the LWP
by cloud amount but only for values above 25% [see
Greenwald et al., 1997], indicates the adjusted cloud LWP
data are still significantly smaller (14—39%) than the
overcast cloud LWP.

5. Conclusions

[26] Methods for estimating minimum errors in micro-
wave-based cloud LWP products have been presented.
Applying these techniques to 3 weeks of global AMSR-E
pixel-level LWP data has shown that 70% of their system-
atic errors occurred between —0.011 and +0.025 kgm >
(—8.2% and +54%) with an average random error of 0.013
kgm 2. Investigation of LWP data in inhomogeneous cloud
conditions also showed a dependence of the data on cloud
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Figure 4. Distributions of nonprecipitating warm overcast
cloud liquid water path from instantaneous AMSR-E data
stratified into different cloud amount categories. Bin size is
0.005 kgm 2.
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Table 1. Cloud Statistics for AMSR-E Liquid Water Path (LWP)
Data Analysis in Non-Overcast Cloud Conditions

Cloud Amount Number of Data Mean Cloud Mean Cloud
Range Points LWP, kgm > Amount
0-25% 880491 0.0125 11.4%
25-50% 698514 0.0166 37.5%
50-75% 720735 0.0212 62.7%
75-100% 945751 0.0276 88.5%

fraction, suggesting the influence of beam filling errors.
Most troubling, however, was a strong dependence of the
products on surface wind speed, which contributed signif-
icantly in reducing their sensitivity for small LWP. This
deficiency, along with an implicit dependence of LWP on
cloud amount, presents challenges in interpreting these
datasets for climate studies.

[27] The errors reported in this study, while seemingly
small, will have an important impact on radiation budget
calculations. Assuming a mean cloud LWP of 0.05 kgm 2
(based on Figure 3), a +0.025 kgm 2 perturbation in LWP
yields a +75 Wm 2 change in TOA shortwave (SW) flux
and a —87 Wm? change in surface SW flux [Turner et al.,
2007]. In terms of cloud radiative forcing (CRF), a
+0.025 kgm 2 perturbation translates roughly to a
—13 Wm 2 change in the net CRF [Greenwald et al.,
1995].

[28] Even if uncertainties due to the surface wind speed
dependence could be significantly reduced, there is a far
greater potential in producing higher quality LWP products
by exploiting measurements near 85 GHz. Because these
measurements are more sensitive to smaller liquid water
amounts, it has been shown that including these data can
greatly reduce both systematic and random errors in LWP
retrievals [Jung et al., 1998].

[29] Finally, the drawback of using multi-sensor satellite
data is the time consuming analysis due to the massive
datasets involved. However, new processing systems com-
posed of computer clusters and dedicated software will
enable the processing of one month of satellite data in just
one day [Gumley et al., 2006]. These systems will make
multi-sensor satellite collocation feasible and provide long-
term global estimates of minimum errors in cloud LWP
products not only for climate and remote sensing studies,
but also for future assimilation of these observations into
forecast models.
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