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ABSTRACT

The importance of accurately representing the role of clouds in climate change studies has become
increasingly apparent in recent years, leading to a substantial increase in the number of satellite sensors and
associated algorithms that are devoted to measuring the global distribution of cloud properties. The physics
governing the radiative transfer through clouds is well understood, but the impact of uncertainties in
algorithm assumptions and the true information content of the measurements in the inverse retrieval
problem are generally not as clear, making it difficult to determine the best product to adopt for any
particular application. This paper applies information theory to objectively analyze the problem of liquid
cloud retrievals from an observing system modeled after the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) instrument currently operating on the Aqua and Terra platforms. It is found that four
diagnostics—the retrieval error covariance, the information content, the number of degrees of freedom for
signal, and the effective rank of the problem—provide a rigorous test of an observing system. Based on
these diagnostics, the combination of the 0.64- and 1.64-um channels during the daytime and the 3.75- and
11.0-wm channels at night provides the most information for retrieving the properties of the wide variety of
liquid clouds modeled. With an eye toward developing a coherent representation of the global distribution
of cloud microphysical and radiative properties, these four channels may be integrated into a suitable
multichannel inversion methodology such as the optimal estimation or Bayesian techniques to provide a
common framework for cloud retrievals under varying conditions. The expected resolution of the observing
system for such liquid cloud microphysical property retrievals over a wide variety of liquid cloud is also

explored.

1. Introduction

Clouds play an important role in the regulation of the
earth’s climate. They influence both the amount of so-
lar energy that reaches the earth’s surface and the
amount that is radiated back to space and, therefore,
represent a critical factor governing global energy bal-
ance (Liou 1986). Furthermore, clouds play an impor-
tant role in many chemical processes within the atmo-
sphere acting as a surface for chemical reactions and
providing a mechanism for the removal of aerosol par-
ticles through scavenging (Seinfeld and Pandis 1998).
There is a body of evidence that suggests that human
activity may affect climate by altering cloud micro-
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physical properties as well as their vertical location and
spatial distribution. Thus, quantitative global records
of cloud microphysical properties are fundamental to
answering many of the questions posed by the climate
change community. It is not surprising, then, that
worldwide inference of cloud microphysical properties
continues to be a focus of a growing number of instru-
ments, such as the Advanced Very High Resolution
Radiometer (AVHRR) aboard the Geostationary Op-
erational Environmental Satellite (GOES), the Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
aboard the Earth Observing System (EOS) Aqua and
Terra platforms, the Polarization and Directionality
of the Earth’s Reflectances (POLDER) aboard the
Polarization and Anisotropy of Reflectances for Atmo-
spheric Sciences Coupled with Observations from a Li-
dar (PARASOL) satellite, and the Cloud Profiling
Radar (CPR) and Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP) aboard the soon-to-be-
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launched CloudSat and Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO)
satellites.

Given the high degree of measurement accuracy af-
forded by such instruments, the reliability of derived
atmospheric products no longer depends as heavily on
instrument calibration and noise but more so on the
choice of spectral bands, the forward model, and the
method of inversion. Consider, for example, optical
depth and effective radius retrievals. The remote sens-
ing literature is replete with descriptions of algorithms
for inferring these cloud properties from distinct com-
binations of radiances at multiple wavelengths of visible
and infrared radiances, some of which are summarized
in Table 1 of Miller et al. (2000). The physical basis of
each of these algorithms rests on the fact that water
droplets, ice crystals, and the gaseous constituents of
the atmosphere display different spectral signatures.
Hence, microphysical and optical properties of single-
layer clouds can be inferred in principle from radiances
at two or more wavelengths. While many of these al-
gorithms have successfully been applied to map clouds,
few are universal in the sense that they can be applied
to any scene at any time of the day independent of the
background or surface. On the contrary, many can only
be applied under specific conditions (e.g., during the
daytime) or over a limited dynamic range (e.g., opti-
cally thin clouds) leading to unphysical discontinuities
when one seeks to compile a complete database of the
global distribution of clouds. Moreover, in the past,
channels used in such algorithms have been selected
empirically, based on prior research showing sensitivity
to the properties of interest and constrained by avail-
able wavelengths fixed by satellite hardware. The use of
distinct combinations of wavelengths can lead however
to discrepancies between the products of different al-
gorithms when they are applied to the same scene by
virtue of subtle differences in the information provided
by the measurements. Unfortunately, such differences
between algorithm products are often difficult to re-
solve because of limited quantitative measures of the
uncertainties in each.

In the case of the MODIS cloud product, the reflec-
tance map technique of Nakajima and King (1990) is
employed for daytime retrievals using an absorbing
channel (e.g., 2.142 um) and a nonabsorbing channel
(e.g., 0.664 wm). In essence, the retrieval involves the
solution of two nonlinear equations for two unknowns.
Nighttime retrievals must resort to alternate techniques
rooted in thermal emission. In this case, the CO, slicing
method is often used to first determine the cloud-top
temperature. Knowledge of the cloud temperature is
then used to constrain optical depth and effective ra-
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dius retrievals for thin cirrus using radiances at 3.7 and
11 pm, following a technique analogous to that intro-
duced by Inoue (1985) and Prabhakara et al. (1988).
Comparisons of these techniques under daytime condi-
tions, however, often indicate differences of a factor of
2 or more in retrieved effective radius and optical
depth. In fact, changing the particular channels used
within either of these techniques can also significantly
impact the results because of subtle differences in the
sensitivity of the measurements to the retrieval param-
eters and assumptions that are required in associated
radiative transfer model (RTM) calculations. Assessing
the relative performance of these techniques (and oth-
ers in the literature) requires a methodology that ex-
plicitly accounts for relative differences in both the sen-
sitivity of each measured radiance to the retrieval pa-
rameters and their uncertainties including components
owing to both measurement and modeling errors.

The approaches commonly adopted for assessing the
information content of a system are well suited for this
purpose. Interestingly though, while a casual perusal of
the retrieval literature attests the emphasis placed on
techniques of inverting remotely observed data, very
little reference is made to the information content of
the measurements themselves. For example, a sampling
of the different inversion methods include the follow-
ing: constrained nonlinear least squares minimization
(Worden et al. 1999), neural networks (Juliette and
Clerbaux 1999), principal component analyses (Tanre
et al. 1996), optimal estimation using Bayesian methods
(e.g., Rodgers 1976; Evans 2002), Bayesian Monte
Carlo methods for non-Gaussian inverse problems
(Tamminen and Kryola 2001), split-window techniques
(e.g., Prabhakara et al. 1988; Suggs et al. 1998), bidirec-
tional mapping techniques (Nakajima and King 1990;
Rolland et al. 2000), regularization methods (Eriksson
2000), and discrepancy principles that extend regular-
ization methods (Li and Huang 1999). Of the afore-
mentioned works, however, only those of Worden et al.
(1999) and Evans (2002) refer to and use theoretic in-
formation methods. The former refers to how much
information is gained in a retrieval relative to the prior
covariance matrix, while the latter refers to the amount
of information provided by additional submillimeter
microwave channels. Neither, however, attempts to re-
late information content to the retrieval covariance ma-
trix.

It is, therefore, of interest to revisit the problem of
cloud microphysical property retrievals from the per-
spective offered by information theory to determine a
single optimal framework that can be applied to differ-
ent satellites under as wide a variety of conditions as
possible. Toward this end, this paper establishes a rig-
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orous, objective methodology for determining the in-
formation content of a set of observations, selecting an
optimal channel configuration, and assessing the effects
of both model and instrumental uncertainties on the
final inferred product. The analysis is rooted in infor-
mation theoretical concepts elucidated by Shannon and
Weaver (1949) and on the application of their tech-
nique to atmospheric science by Rodgers (2000). Chan-
nel selection is made objective by quantifying the
amount of information contained in the spectral mea-
surements and calculating their effective signal-to-noise
ratio (SNR) in relation the desired set of retrieval pa-
rameters. This is accomplished practically through
analysis of the retrieval covariance matrix, which holds
the key for understanding and quantifying differences
between different retrieval procedures and observa-
tional data.

To illustrate the benefits of adopting such an ap-
proach, the method is applied to the problem of retriev-
ing cloud microphysical properties from satellite radi-
ance observations at solar and thermal wavelengths us-
ing the MODIS channels as a baseline. For simplicity, it
will be assumed that single-layer liquid and ice clouds
can be discriminated from one another and multilayer
cloud complexes through a combination of their radio-
metric signatures [e.g., through the trispectral tech-
nique explored in a series of papers by Ackerman et al.
(1990), Strabala et al. (1994), and Baum et al. (2000)]
and active sensors, such as the CPR or CALIOP. Under
this assumption, we initially focus on the relatively
straightforward problem of retrieving the parameters of
a gamma distribution of water droplets in single-layer
liquid clouds to facilitate illustration of the methodol-
ogy and interpretation of the results. Furthermore, for
this preliminary application of the technique, we focus
on oceanic scenes because they represent the largest
fraction of pixels a satellite will encounter. The more
challenging problem of ice cloud retrievals, which is
complicated by the required assumption of ice crystal
habit, is analyzed in a similar manner in a companion
paper by Cooper et al. (2006, hereinafter Part I1). The
analysis can be readily extended to other surfaces and
multilayer cloud complexes but these problems are be-
yond the intended scope of the current study and are,
therefore, left as future topics of investigation.

The channels considered in the analysis, their noise
requirements, and their primary uses (adapted from the
MODIS Web site, available online at http://modis.gsfc.
nasa.gov/about/specifications.php) are summarized in
Table 1. Note that the four channels centered on the
15-um CO, band that are primarily used for determin-
ing cloud-top pressure are not analyzed for the low
clouds studied here, but have been included in the
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TABLE 1. The MODIS channels of relevance to this study and
their primary uses. Solar reflectance channels (upper set) are
given in nanometers; thermal emission channels (lower set) are in
micrometers.

Band Wavelength SNR Primary use
1 620-670 128 Land/cloud/aerosol
2 841-876 201 Boundaries
6 1628-1652 275 Land/cloud/aerosol
7 2105-2155 110 Properties
26 1360-1390 150 Cirrus clouds/water vapor
Band Wavelength NEAT Primary use
20 3.66-3.84 0.05 Surface/cloud
23 4.02-4.08 0.07 Temperature
27 6.535-6.895 0.05 Cirrus clouds/water vapor
29 8.4-8.7 0.05 Cloud properties
31 10.78-11.28 0.05 Surface/cloud
32 11.77-12.27 0.05 Temperature

analysis for ice clouds in Part II. A state-of-the-art ra-
diative transfer model is employed to simulate radi-
ances at these wavelengths for cloud scenes spanning a
range of cloud heights, liquid water paths, effective ra-
dii, surface albedos, atmospheric pressure and tempera-
ture profiles, and solar zenith angles. The resulting
simulated measurements are then fed into a series of
sensitivity studies that provide the sensitivities of each
channel to the retrieval parameter and rigorous esti-
mates of the uncertainties in each because of potential
errors in the assumptions required to model them. The
combination of sensitivities and uncertainties com-
pletely determines the information content of the en-
semble of measurements that is subsequently used to
objectively determine the combination of wavelengths
that provide the greatest amount of information for
global microphysical property retrievals.

2. Sensitivity studies

As a precursor to the more rigorous information con-
tent study that follows, it is useful to examine the sen-
sitivity of the observations to the parameters of interest.
In addition to illustrating the dominant physical pro-
cesses governing the radiative transfer through clouds
and providing insight into the mechanics of the retrieval
problem, such analyses also form the input to the in-
formation content study itself. The required radiances
are computed using an RTM called Radiant (Christi
and Stephens 2002; Christi and Gabriel 2004; Gabriel et
al. 2005), which is multistream, plane parallel, and ac-
counts for multiple scattering. Atmospheric absorption
is modeled using the correlated-k distributions devel-
oped for MODIS wave bands by Kratz (1995). This
approach captures gaseous absorption properties to an
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accuracy of 1%, while significantly reducing the com-
putational costs incurred by explicit line-by-line calcu-
lations. The ocean surface is modeled as a Lambertian
reflector with a visible albedo of 0.1 (at wavelengths
less than 3 um), consistent with the Earth Radiation
Budget Experiment (ERBE) observations of Harrison
et al. (1990) and an infrared emissivity of 0.99. Tem-
perature, moisture, and gas-mixing ratios are assigned
based on the McClatchey et al. (1972) tropical atmo-
sphere while the scattering properties of cloud particles
are modeled using a Mie scattering code assuming
spherical droplets.

Using Radiant, radiances for the 11 channels in Table
1 were simulated for a wide variety of liquid clouds. The
cloud droplets are assumed to follow a lognormal dis-

tribution
N, 1 [In(R/R,)]?
—— exp{—z[—( g)} } )

N(R) =
R\/ 2704, Tlog

where R, is the modal radius, N, is the number density,
and 0y, is the natural logarithm of the geometric stan-
dard deviation o,. The effective radius, related to the
modal radius via R, = R, exp[(5/2)0'120g], is varied be-
tween 5 and 14 pm in 1-um increments. Here, oy,, =
\/(InR — InR,)” is assumed fixed at 0.427 (Deirmend-
jian 1969), while number density N, was scaled to pro-
vide five different values of liquid water path (LWP)
corresponding to visible optical depths of 5, 15, 30, 40,
and 50 at an effective radius R, = 8, resulting in a total
of 50 test cases. The optical properties of the resulting
clouds were modeled using Mie theory and they were
placed between 1 and 2 km in the McClatchey midlati-
tude summer (MLS) atmosphere (McClatchey et al.
1972). Unless otherwise stated, all daytime calculations
assume a solar zenith angle of zero, corresponding to an
overhead sun. Visible optical depths corresponding to
all of these cases are presented in Fig. 1 for reference.

This base set of cases is supplemented with two sets
of sensitivity studies—one to establish the behavior of
each channel in response to changes in the retrieval
parameters themselves, and the second for use in esti-
mating modeling uncertainties resulting from errors in
those parameters are not retrieved but must be speci-
fied in order to perform the necessary radiative transfer
calculations.

a. Forward model uncertainties

Regardless of the measure of information content
one adopts, the result is necessarily rooted in the signal-
to-noise characteristics of the retrieval system. An ob-
servation whose sensitivity to a retrieval parameter is
less than the accuracy to which it can be measured can-
not provide useful information. Thus, it is important to
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Fi1G. 1. Visible (0.64 um) optical depths as a function of effective
radius (vertical axis) and liquid water path (horizontal axis) for
the 50 base cases modeled.

establish a rough estimate of the uncertainties in each
channel that arise from a combination of random mea-
surement and calibration errors as well as any assump-
tions needed to model the atmospheric radiative trans-
fer that are not going to be explicitly retrieved. Mea-
surement errors are modeled after the specifications for
the MODIS instrument aboard Aqua that have been
summarized in Table 1. In addition to these uncertain-
ties, all assumptions that are required to perform radia-
tive transfer calculations in the visible and infrared
must be considered as potential sources of uncertainty
in the forward model. These include the shape of the
drop size distribution (DSD), cloud height and geomet-
ric thickness, surface albedo, assumed humidity and
temperature profiles, the presence of aerosols, the use
of plane-parallel calculations to model a cloud that is
inherently inhomogeneous in the vertical and horizon-
tal directions, the representativeness of a satellite snap-
shot of clouds for measuring their global distribution
(i.e., sampling errors), and so on.

While all of these error sources are important, it is a
monumental task to evaluate the contributions from all
of them. In fact, a suitable methodology for assessing
the global mean of 3D effects has not yet been devel-
oped and, because the analysis focuses on a MODIS-
like instrument but purposely avoids defining a particu-
lar observing system, sampling errors cannot be de-
fined. Furthermore, some of these assumptions can be
imposed as soft constraints on the retrieval by allowing
them to be retrieved as opposed to assigning them in
advance. Allowing cloud-top height and surface albedo
to vary, for example, provides additional degrees of
freedom that allow the algorithm to better match the



24 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY

observations. As a result, we focus only on those
sources that can directly be modeled using the Radiant
model and cannot realistically be retrieved from the
observations, namely, uncertainties in the assumed
DSD, specific humidity profile, and temperature pro-
file. To this end, the 50 base cases described above were
rerun with each of these quantities perturbed by an
amount representative of their expected uncertainty.

To model errors in assumed DSD, the cloud droplet
assumption is changed to follow a modified-gamma dis-
tribution,

N 0 R\ —R/R,

v =i (7)o )
with the number density N, scaled to match the LWP
values assumed in the base cases and the effective ra-
dius defined as noted above R, = R, exp[(5/2)07,,] to be
consistent with the R, values assumed in the lognormal
distribution (Stephens 1994). The width parameter v is
held fixed at 3, following Deirmendjian (1969). In an
operational retrieval, profiles of temperature and hu-
midity need to be specified. A likely source of such data
are numerical weather prediction (NWP) models such
as that used at the European Centre for Medium-
Range Weather Forecasts (ECMWF), so it is assumed
that the uncertainties in ECMWF temperature and hu-
midity predictions are representative of the level of er-
ror in the values assumed in the algorithm. Based on
the sensitivity studies of Eyre (1990) and Eyre et al.
(1993), then, temperatures were perturbed by 2 K at
each layer and specific humidities were perturbed by
15% below 500 hPa and 30% above.

The resulting estimates of the uncertainties from
each of these sources are then combined with one an-
other and an estimate of the measurement errors to
determine effective fractional errors in each channel
are modeled. Once again, while no data from any par-
ticular instrument are used in the analysis, an appropri-
ate estimate of instrument noise from the SNR and
noise-equivalent temperature difference (NEAT) re-
quirements for MODIS measurements (summarized in
Table 1) are used to represent instrument performance.
Then, if it is assumed that instrument noise and each of
the sources of model error are uncorrelated, the com-
bined uncertainty resulting from all of these sources is
given by the square root of the sum of the squares of
each of these estimates

VG G (o) (5
& = )+ (=) + (=) +|=],
Vi Vi Vi Vi

3)

where ¢; is the (dimensionless) fractional error in the
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ith channel (Taylor and Mohr 2004). The radiance in
channel i is represented by y,, while §,, p5p, 87, and §,,,
represent radiance uncertainties resulting from humid-
ity, DSD, temperature, and measurement errors, re-
spectively.

Fractional errors in six of the channels considered are
presented in Fig. 2 for the range of liquid cloud R, and
LWP considered. In general, the uncertainties in the
shortwave radiances are much smaller than those in the
infrared because of the fact that the latter suffer from
errors in the assumed temperature and humidity pro-
files while the former are only sensitive to errors in
assumed DSD, which are typically small provided that
the effective radius and liquid water path are held fixed.
As a result, fractional errors at 3.75 and 11 wm range
from 5% to 10% while those in the shortwave channels
are ~1%-2% for all but the thinnest clouds. A subtle
yet important result of this analysis is that the errors at
2.13 pum tend to be approximately 50% larger than at
1.64 um because of differences in the strength of the
water vapor absorption at the two wavelengths, which
causes the 2.13-um channel to be more sensitive to er-
rors in the assumed humidity profile. In the analysis
that follows we will see that this can have implications
for determining the optimal channels for use in a re-
trieval algorithm. The uncertainties in 1.38-um radi-
ances are at least an order of magnitude larger than
those in all other channels. This is a direct consequence
of the strong water vapor absorption at this wavelength
combined with our inability to constrain the specific
humidity profile to any better than 15% using NWP
model data. Last, note that the fractional errors of some
channels exhibit significant scene dependence while
those in others do not, suggesting that the information
content and optimal channel configurations determined
below are likely to depend on the region-in-state space
in which the solution lies. Fractional errors at 1.38 um,
for example, increase with increasing optical depth be-
cause of enhanced cloud reflection that causes a greater
fraction of the incident radiation to pass through the
uncertain water vapor profile in both the downwelling
and upwelling directions. Errors at 11 wm, on the other
hand, are dominated by uncertainties in cloud-top tem-
perature, which are not sensitive to the properties of
the underlying cloud.

b. Sensitivities to retrieval parameters

To assess the “signal” component of the signal-to-
noise ratios that drives the information content study, a
second series of sensitivity studies was performed in
which each of the parameters of interest was perturbed
independently with sensitivities computed via
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FIG. 2. Fractional errors in selected channels resulting from the combination of uncertainties in prescribed DSD, specific humidity
and temperature profiles, and instrument noise.

5, = 2 4
i_AX’ ()

where X represents the three key retrieval parameters:
R., LWP, and cloud-top height (Cy,,) and the AX are
chosen to be ~5% of the value of the parameter X. The
exception is Cy,,, which is perturbed by 1 km, consistent
with the vertical resolution of the Radiant radiative
transfer model. The resulting sensitivities can then be
divided by the radiance errors in each channel to define
an effective SNR for each retrieval parameter at each
wavelength.

Figure 3 combines sensitivities to R, with the uncer-
tainty estimates from Fig. 2 to produce maps of ef-
fective SNR for effective radius retrievals defined by
SNR = Sj/g,/I;. The largest effective SNR for R, occur at
1.64 um where they are about a factor of 2 larger than
those at 2.13 um. As indicated above, this is largely
because of the fact that fractional errors at 1.64 um are
smaller than those at 2.13 um. Even so, these two chan-
nels clearly contain the majority of the particle size
information in the system. The small sensitivities at 0.64
pum owe their existence to the fact that changing R,
causes an inversely proportional change in optical
depth when LWP is held fixed. Last, although they

are a factor of 20 less than those at 1.64 wm, the non-
negligible effective SNRs at 3.75 um play an important
role in nighttime retrievals in the absence of a signal in
the shortwave channels.

Similar results corresponding to effective SNR for
LWP retrievals are presented in Fig. 4. Clearly, the
visible channel exhibits the largest effective SNRs for
all clouds except the optically thinnest cases (lowest
LWP and largest R,) where the largest sensitivities oc-
cur at 1.64 um. Considering the lack of SNR in any of
the infrared channels, no LWP information is expected
for nighttime retrievals.

Because it is desirable to introduce as few assump-
tions as possible in the retrieval, it is of interest to in-
clude cloud-top height Cy,, as a retrieval parameter
rather than fixing it a priori. To examine the feasibility
of using the visible and infrared radiances to constrain
cloud-top height, Fig. 5 summarizes the effective SNR
for C,,, retrievals. Changing cloud height affects the
observed radiances through the following two mecha-
nisms: 1) it changes the cloud-top temperature influ-
encing emission at thermal wavelengths, and 2) it mod-
ifies the amount of water vapor above the cloud influ-
encing the amount of radiation that gets absorbed and
emitted at wavelengths corresponding to water vapor
absorption bands. The first mechanism is, for example,



26

R

JOURNAL OF APPLIED METEOROLOGY AND

CLIMATOLOGY

VOLUME 45

e
0.646 1.64 2.13
14 7.00 14 7.00 14 7.00
12 5.60 12 5.60 12 5.60
e~ 1 = 11 = 17
c 420 420 E 4.20
2 9 3 9 3 9
. 2.80 o 2.80 o 2.80
“ 8 © 8 © 8
" 1.40 g 1.40 8 1.40
5 0.00 5 0.00 5 0.00
28 86 171 228 285 28 86 171 228 285 28 86 171 228 285
LWP (gm™) LWP (gm™) LWP (gm™)
1.38 3.75 11.0
14 0.35 14 0.35 14 0.35
12 0.28 12 0.28 12 0.28
—~ 11 11 ~ 1
c 0.21 0.21 E 0.21
S 2 9 39
: 0.14 0.14 - 0.14
E g &g © 8
5 0.07 5 0.07 & 0.07
5 0.00 5 0.00 5 0.00

28 86 171 228 285
LWP (gm™)

28 86 171 228 285
LWP (gm™)

28 86 171 228 285
LWP (gm™)

Fi1G. 3. Signal-to-noise ratio at selected wavelengths for effective radius perturbations. Note that the range of values on the upper

panels is 20 times that on the lower panels.

responsible for the observed SNRs of ~1.2 at 11.0 uwm.
The latter mechanism is particularly evident at 1.38 um,
and to a lesser extent 1.64 and 2.13 um. The extremely
strong sensitivity at 1.38 um is counterintuitive for
clouds with tops as low as 2 km because of the strong
water vapor absorption at this wavelength. This result is
an artifact of the fact that, on paper, arbitrarily small
radiances can be analyzed when in practice the absolute
radiance reflected to the satellite by the cloud is so
small (~0.0006 W m~2 st~ ') that it is not likely to be
detectable over the electrical noise in the sensor. In the
event that a sensor could be constructed to detect ra-
diances down to this level, however, a small increase in
cloud-top height dramatically increases the amount of
radiation reflected back to the satellite because the
water vapor is so prominent at these altitudes. In the
McClatchey MLS atmosphere assumed here, for ex-
ample, changing the cloud top from 2 to 3 km gives rise
to an order of magnitude increase in the modeled ra-
diance at the top of the atmosphere. This, in turn, leads
to an SNR of ~10 based on the estimated fractional
uncertainties that are on the order of unity. For now,
small radiances at 1.38 wm will be included in the analy-
sis with the caveat that results involving this channel
are contingent on the ability of the instrument to mea-
sure radiances as low as 0.0005 W m~2 st~ ', In addi-

tion, it must be possible to model radiances with abso-
lute magnitudes this small, avoiding numerical issues
such as instabilities, discretization errors, and trunca-
tion errors. Regardless of these issues, the strong
influence of water vapor in the 1.38-um channel suffi-
ciently decouples it from the other channels such that
failure to model the electrical noise floor of the instru-
ment should not impact the analysis of the remaining
channels.

All three of these figures further emphasize the fact
that the information content of the observing system is
likely to be strongly dependent on the scene being re-
trieved. The sections that follow outline a framework
that takes this into account and attempts to determine
the subset of channels that provide the most informa-
tion for the widest variety of cloud systems.

3. Information theory

The sensitivity studies described above provide in-
sight into the response of individual measurements to
the retrieval parameters, but to determine the combi-
nation of channels best suited for the retrieval, it is
necessary to define a set of criteria for assessing the
response of the instrument as a whole. These criteria
must not only account for the sensitivities of each indi-
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FIG. 4. As in Fig. 3, but for LWP perturbations. In this case the scale on the upper panels is 60 times that on the lower panels.

vidual channel but also correlations between them. In
addition, the expected uncertainty in each measure-
ment must be considered to accurately characterize the
amount of independent information provided by the
ensemble of channels relative to the level of noise in-
herent in the observing system. The metric adopted in
this study is the information content, a tool that has
been widely used in many engineering disciplines but
has, to date, been underutilized in atmospheric remote
sensing. In general, information content refers to the
degree by which a set of observations improves our
knowledge of the set of retrieval parameters (cloud
height, particle size, number concentration, etc.). Put
another way, one can think of information content as
the factor by which the total number of distinct combi-
nations of the retrieval parameters or “states” that sat-
isfy our prior knowledge of the system, or the degree of
nonuniqueness, is reduced by making the measure-
ments. Because our ability to distinguish states in the
retrieval system depends both on the sensitivity of the
measurements to the retrieval parameters and the ac-
curacy of those observations, the information content
inherently accounts for these factors and is, therefore,
well suited to analyzing the properties of an observing
system.

a. Shannon information content

There is an abundance of different measures of in-
formation content (see, e.g., Kullback 1968 or Bernardo
and Smith 1994, and references therein), many of which
may be adapted to the current problem. We adopt the
definition of Shannon and Weaver [(1949), hereinafter
referred to as the Shannon information content (SIC)]
that is described in detail by Rodgers (2000) in relation
to the problem of atmospheric sounding from multi-
spectral satellite radiance measurements and has re-
cently been applied to the problem of CO, retrievals
from infrared sounding observations by Engelen and
Stephens (2004). As a measure of knowledge of the
retrieval system, Shannon and Weaver (1949) adopt an
analog to the thermodynamic entropy S, defined as the
logarithm of the number of distinct internal states of a
macroscopic system. Letting P, represent the PDF gov-
erning the probability of obtaining any state in the re-
trieval system prior to making a measurement and P,
be the PDF after the measurement has been made, the
Shannon information content is defined as the differ-
ence in entropy of these two PDFs, namely,

H = S8(Py) — S(P,). )
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FIG. 5. As in Fig. 3, but for cloud-top height perturbations. The scale for the 1.38-um image ranges from 0 to 10.5; those at other
wavelengths range from 0 to 1.5.

The SIC thus defined measures the degree to which the
addition of a measurement reduces the disorder of the
retrieval state space. For convenience, we assume that
both the prior and posterior PDFs follow Gaussian dis-
tributions with covariances S; and S,, respectively.' It
can be demonstrated (e.g., Rodgers 2000) that the en-
tropy of a multivariate Gaussian distribution of m vari-
ables is given by

1
S(P) = —log2|S| +c, (6)

where the constant ¢ = (m/2) log,(2e). The SIC is then

1
H = 510g2|s1s£ 1|~ (7)

! Aside from the computational benefits to assuming Gaussian
distributions in the analysis, it can be shown that the Gaussian
distribution maximizes the entropy or, equivalently, minimizes
our assumed knowledge of the state space when only the mean
and variance of the distribution of retrieval states is known
(Rodgers 2000). Thus, the Gaussian distribution is, in fact, the
most appropriate choice in the absence of conclusive evidence for
an alternative form of PDF.

Because the covariances represent the volume-in-state
space corresponding to our uncertainty in the retrieval
state prior to and after making the measurement, the
information content is a measure of the factor by which
the measurement reduces our uncertainty in the re-
trieval state.

With entropy defined in this way, that is, as a loga-
rithm to the base 2 of the total number of states, H
provides the information content in bits, implying that
the observations allow 27 states to be distinguished
from the prior state space. Conceptually, the observa-
tions can be thought of as refining a measuring stick by
subdividing each of the prior divisions into 2 new
ones. The larger the information content H, the finer
the resolution of the new tick marks on the measuring
stick and the more accurately the quantity of interest
can be resolved. In multidimensional problems such as
the cloud property retrievals considered here, one can
envision multiple measuring sticks pointed along each
variable in the retrieval vector. After making an obser-
vation, each of these measuring sticks will have its own
characteristic resolution that depends on the combined
sensitivity of the observation vector to the parameter it
represents. It will be shown that the total information
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content represents the total number of divisions on the
measuring sticks that lie along the set of perpendicular
directions defined by the eigenvectors of S;S, ™"

We now return to the problem of retrieving cloud
microphysical properties from radiance observations.
Suppose y represents a set of observed radiances and x
represents the vector of cloud microphysical param-
eters to be retrieved. Let §, and S, be the covariance
matrices describing the state space prior to making a
measurement and the measurement error, respectively.
Assuming a physical relationship between y and x of
the form, for example, y = F(x), it can be demonstrated
that the covariance describing the posterior state space is

S, =(S,' +K'S; 'K, (8)

where K is a linearized forward model consisting of the
Jacobian of the forward model with respect to the re-
trieval vector with elements given by

ay;

K= an ©)
The diagonal elements of S, provide the variance in the
retrieved products in variational retrieval techniques,
such as those outlined in Rodgers (1976), Engelen and
Stephens (1997), and L’Ecuyer and Stephens (2002).

As noted in Rodgers (2000), to compare the mea-
surement error with the natural variability of the mea-
surements across the full prior state space it is conve-
nient to work in a basis where the measurement errors
and prior variances are uncorrelated. Therefore, it is
desirable to transform K into

K =8, '?KS?, (10)

which offers the added benefit of being the basis in
which both the prior and measurement covariances are
unit matrices. Furthermore, Rodgers (2000) demon-
strates that the number of singular values of K greater
than unity defines the number of independent measure-
ments that exceed the measurement noise defining the
effective rank of the problem.

Using S, for the covariance of the prior state space
and Eq. (8) for that of the posterior state space, the SIC
becomes

1
H=3 log,IS,(K'S; 'K + S, )
1 .-
= ElogleTK + 1

1 N
25210g2IAf+ 11, (11)
=
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where A;s are the singular values of k, lis the m X m
identity matrix, and m is the number of retrieval pa-
rameters. In addition, Rodgers (2000) demonstrates
that the number of degrees of freedom for signal can be
estimated using the singular values of K via

. 1+ -
providing another important property of the observing
system, namely, the number of independent measure-
ments that can be extracted from the observations.
Thus, we have defined the following four diagnostics
for assessing the capabilities of the observing system:

1) the error covariance S,, characterizing the width of
the posterior PDF and providing a measure of the
overall accuracy of the retrieval,

2) the SIC H, which measures the relative improve-
ment to our a priori knowledge that results from the
addition of the measurements;

3) the number of degrees of freedom for signal d,,
which represents the number of independent obser-
vations that can be constructed from the measure-
ments; and

4) the number of singular values that exceed the noise
level of the system that defines the effective rank N
of the problem. (We can interpret N as the number
of independent quantities that can be retrieved from
the measurements. In this way, N is analogous to d,,
but applies in retrieval space rather than measure-
ment space.)

Individually, these diagnostics can provide useful in-
formation concerning aspects of the retrieval problem,
but in the absence of the others they are easily misin-
terpreted. It is, for example, important to consider the
overall accuracy of the retrieval in combination with
the information content, because a set of measurements
may carry much information in highly undercon-
strained problems but can still lead to large uncertain-
ties in retrieved products because of the ill-posed na-
ture of the problem. Taken together, however, they
provide a more or less complete quantitative descrip-
tion of the retrieval process from observations through
to final products that allows for a critical assessment of
different algorithms or even distinct platforms in an
objective manner.

b. Example: Liquid cloud retrievals from shortwave
reflectances

As an example, consider a reflectance-based ap-
proach to retrieving the effective radius and liquid wa-
ter path analogous to that introduced by Nakajima and
King (1990). The technique makes use of the fact that
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reflected radiances at nonabsorbing wavelengths (re-
ferred to as conservative scattering channels) are pri-
marily sensitive to the optical depth of a liquid cloud,
while those at absorbing wavelengths (nonconservative
scattering channels) are dominated by the size of its
constituent cloud droplets. Thus, the combination of
reflectances at a nonconservative wavelength (e.g., 2.13
pm) and a conservative wavelength (e.g., 0.64 wm)
yields a two-dimensional grid in which a pair of radi-
ance measurements can be related to geometric mean
radius and liquid water path. This is illustrated in Fig. 6.
Based on the sensitivity studies described above, Fig. 6
also presents the estimated uncertainties in the 0.64-
and 2.13-um channels and illustrates how these errors
map into the R, and LWP retrieval space. Note that
uncertainties in the spectral radiance measurements
lead to nonuniqueness in the retrieval because the re-
lationship between a given radiance pair and the re-
trieval parameters becomes multivalued. This effect is
particularly noticeable at the thick cloud limit where
the sensitivities of the radiances are low and the error
bars cover a wide range of LWP values.

Making use of these error estimates and the SIC for-
malism outlined above, it is straightforward to compute
the information content of each of these channels for
retrieving R, and LWP from an a priori range of R, =
9 + 4 um and LWP = 150 = 65 g m~2, which includes
a majority of nonprecipitating liquid clouds in nature
(Miles et al. 2000). The results are presented in Fig. 7,
which demonstrates the effect of successively adding
radiance measurements in the retrieval problem. In this
example, all radiance errors are assumed to be ~5% for
simplicity. The upper-left-hand panel illustrates the a
priori state space. The blue ellipse corresponds to the
projection of a two-dimensional Gaussian PDF onto
the solution space at the 20 level, encompassing 95% of
the possible solutions. In the absence of observations,
any of these solutions are valid and cannot be distin-
guished from one another.

The upper-right panel demonstrates the impact of a
0.64-um radiance observation corresponding to a cloud
with R, = 10 um and LWP = 171 g m 2. Given the
sensitivity of this channel to the retrieval parameters
and the uncertainties associated with modeling it, this
observation reduces the possible solutions to the range
of values centered on this combination of effective ra-
dius and LWP that is represented by the green ellipse.
Following Eq. (7), the SIC in this case is 1.2, indicating
that slightly more than two independent states can be
resolved from within the initial state space.

The red ellipse in the lower-left panel indicates the
range of allowable solutions after further adding a 2.13-
um radiance measurement. The complementary nature
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FIG. 6. The mapping of uncertainties in 0.64- and 2.13-um ra-
diances (W m~2sr™!) into effective radius (wum) and LWP (g m~2)
space in a reflectance-based retrieval. Filled circles represent
the data points modeled, dashed lines are lines of constant
liquid water path, and solid lines are lines of constant effective
radius.

of the conservative and nonconservative channels leads
to a significant increase in the information content of
the system now allowing six independent states to be
resolved from the original a priori state space. As indi-
cated by the projections of the new posterior PDF (red
ellipse), the errors in retrieved R, and LWP are signifi-
cantly reduced when both channels are included in the
retrieval. Returning to the measuring stick analogy, the
width of the posterior PDF can be viewed as a measure
of the “resolution” of the observing system. As S, de-
creases with the addition of more information, it is pos-
sible to measure R, and LWP more precisely. Put sim-
ply, the finer the scale of the ruler, the greater the
number of distinct states that can be measured.

Interestingly, adding all of the remaining channels
from Table 1 provides only a limited amount of addi-
tional information to the retrieval. This is illustrated by
the yellow ellipse in the lower-right-hand panel of Fig.
7. The range of allowable states has clearly decreased
somewhat relative to the red ellipse, but it is unclear
whether the increased resolution of the observing sys-
tem justifies the enormous increase in computation that
is required to go from a 2- to an 11-channel framework.
Thus, we see that the information content provides a
useful diagnostic for establishing the relative perfor-
mance of different channel combinations, allowing the
true value of increased algorithm complexity to be as-
sessed.

It is important to note that the resolution of our mea-
suring stick depends on where we are in state space. In
this example, it turns out that the resolution of the
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F1G. 7. Graphical representation of the impact of adding information in a two-dimensional
retrieval using the retrieval of effective radius and LWP from shortwave reflectance measure-
ments as an example. Each ellipse represents the projection of the corresponding two-
dimensional posterior Gaussian PDF of solutions at the level that encompasses 95% of the
possible solutions. Results apply to a liquid cloud residing between 1 and 2 km above an

oceanic background.

observing system for LWP retrievals is inversely pro-
portional to LWP and proportional to particle size,
while its resolution for R, retrievals is proportional to
LWP and inversely proportional to particle size. It is
also important to note that the information provided by
the observations is not equally divided between the two
retrieval parameters. Consider, for example, the addi-
tion of the 2.13-pwm channel in Fig. 7. The uncertainty in
R, is reduced by a factor of 4 while that in LWP is
reduced by only 39%.

c¢. Optimal channel selection

Rodgers (2000) describes a method for extending this
framework to optimize a retrieval by objectively select-
ing the subset of channels that provides the greatest
amount of information. To reduce the computation
time required to perform the numerous matrix opera-
tions necessary for repeated application of the preced-
ing equations, Rodgers (1998) proposes an approach
based on sequential modification of the covariance ma-

trix. The procedure first requires that we assess the
information content of each individual measurement
with respect to our prior knowledge of the retrieval
state to create an “information spectrum.” The channel
with the largest amount of information is then selected
and the posterior covariance matrix is adjusted accord-
ingly to account for the information it provides. A new
information spectrum for the remaining channels is
then calculated with respect to this newly defined state
space and a second channel is chosen that provides
maximal information relative to the new covariance.
This process is repeated and channels are selected se-
quentially until of the information in all remaining
channels falls below the level of measurement noise.

Following Rodgers (1998), and letting S, be the error
covariance matrix for the state space after i channels
have been selected, the information content of channel
j of the remaining unselected channels is given by

1 U
H; = 5 log,(1 + kj'Sk)), (13)
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where l~(]« is the jth row of K. The H; form the informa-
tion spectrum from which the channel with the greatest
information is chosen. Taking the chosen channel to be
channel /, the covariance matrix is then updated prior to
the next iteration via

=8+ k] (14)
In this way channels are selected until none of the re-
maining channels has an information content exceeding
the measurement noise.

Returning to the measuring stick analogy, the first
channel chosen initially divides the stick into H, incre-
ments. Each subsequent selected channel further re-
fines the divisions until all useful information is ex-
tracted from the measurements and the finest resolu-
tion possible (given the properties of the observing
system) is reached. The selection procedure outlined
above guarantees that the first channel will provide the
greatest number of divisions, followed by the second
and so on, making it possible to objectively choose the
measurements that maximize our knowledge of the
problem while eliminating those channels that provide
redundant information.

4. Information content of MODIS measurements

The goal of this study is to assess the information
content of the 11 channels summarized in Table 1 for
retrieving the properties of liquid clouds. Specifically, if
the cloud droplets are assumed to follow a lognormal
DSD, the retrieval focuses on retrieving the geometric
mean radius and the liquid water path because these
parameters completely determine the DSD, provided
that one assumes a value of the geometric standard
deviation o,. In an effort to reduce the number of as-
sumptions required in the forward radiative transfer
calculations, the cloud-top height C,,, and shortwave
surface albedo are also considered retrieval param-
eters, although it is anticipated that these parameters
may be constrained in some way using ancillary mea-
surements from another sensor.

a. Covariance matrices

Accurate characterization of the prior and measure-
ment error covariance matrices is central to the prob-
lem of calculating information content. In practice, S, is
easier to define because it merely represents the best
estimate of our prior knowledge of the retrieval param-
eters, in this case geometric mean radius R,, liquid wa-
ter path LWP, surface albedo «, and cloud-top height
Cop- Because our focus is on global retrievals from
satellite-based radiance measurements, we anticipate
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little prior knowledge of the microphysical properties
of the clouds, only whether or not a cloud is present by
virtue of either an active or passive cloud mask. Based
on the climatology of in situ observations of low-level
stratiform clouds made between 1972 and 1995, pre-
sented in Miles et al. (2000), R, varies from ~4 to 12
um while LWP varies from ~25 to 250 g m ™2 for such
clouds. As a generous approximation of this variability,
then, we will assume values of 4 and 200 for the vari-
ance in R, and LWP, respectively.

The assumed variances for a and C,,, on the other
hand, depend on the quality of the ancillary datasets
used to define them. Two scenarios are simulated here,
with the first assuming no cloud height or surface al-
bedo information beyond climatological mean values,
and the other making use of cloud boundaries inferred
from radar reflectivity observations from the CloudSat
Cloud Profiling Radar (Stephens et al. 2002) and the
MODIS surface albedo product (Strahler et al. 1999).
In the case that makes use of climatologies (hereinafter
referred to as “climatological x,”), conservative esti-
mates of 2.5 km and 30% are used for the standard
deviation in C,,, and «, respectively. In the case in
which ancillary data are used (hereinafter referred to as
“ancillary x,”) we adopt the documented value of 10%
for the accuracy in the MODIS surface albedo product
(Strahler et al. 1999) as the standard deviation in «.
Given the vertical resolution of the CPR, we anticipate
cloud-top height to be defined with an accuracy of
+250 m, which is modeled by a Gaussian distribution
with a variance of 0.0625 km?” in the second case.

It is interesting to note that using Eq. (7), the Cloud-
Sat cloud boundaries and the MODIS surface albedo
product have a combined information content of H ~
4.9 bits relative to the climatology-only case. The a
priori state space in the second case is, therefore, a
factor of 2*° = 30 smaller than that in the first case.
Thus, we anticipate that the information content of the
MODIS observations will be significantly smaller in the
second case than the first, even though the former rep-
resents a better-posed problem and will undoubtedly
lead to more accurate retrievals (Cooper et al. 2003).

In practice S, is more difficult to define because it
consists of both measurement error as well as errors
associated with the forward model used to map the
retrieval parameters into measurement space. Two dif-
ferent estimates of the combined forward model and
measurement errors will be tested in an effort to illus-
trate the importance of making rigorous uncertainty
estimates in the analysis. In the first case (hereinafter
referred to as “uniform measurement errors”), a con-
stant 5% error will be assumed in the radiances at all
wavelengths, while in the other (hereinafter referred to






























